低基质吸力条件下颗粒形状和层理角度对伊犁黄土力学性能的影响

IF 3.7 2区 工程技术 Q3 ENGINEERING, ENVIRONMENTAL Bulletin of Engineering Geology and the Environment Pub Date : 2025-01-21 DOI:10.1007/s10064-024-04069-y
Yangyang Hu, Liangfu Xie, Jianhu Wang, Wei Mao, Kai Zhao, Dean Sun
{"title":"低基质吸力条件下颗粒形状和层理角度对伊犁黄土力学性能的影响","authors":"Yangyang Hu,&nbsp;Liangfu Xie,&nbsp;Jianhu Wang,&nbsp;Wei Mao,&nbsp;Kai Zhao,&nbsp;Dean Sun","doi":"10.1007/s10064-024-04069-y","DOIUrl":null,"url":null,"abstract":"<div><p>Through extensive laboratory experiments on unsaturated soils, it has been discovered that particle shape and matric suction significantly influence their mechanical properties. Prior studies have typically examined these factors individually and from a macroscopic perspective. In this study, the aspect ratio is utilized as a representative parameter for particle shape. Employing the Hill constitutive model, a series of triaxial shear numerical experiments of simulations on unsaturated soil were conducted. The results indicate a non-linear relationship between peak deviator stress and aspect ratio, with peak deviator stress initially increasing, then decreasing, and reaching its maximum at an aspect ratio of 1.2. The patterns observed in friction angle, cohesion, and critical stress ratio in relation to aspect ratio mirror those seen in peak deviator stress, with the friction angle exhibiting fluctuations as the particle aspect ratio increases. At a matric suction of 0 kPa, changes in particle shape have a negligible impact on mechanical properties. However, as matric suction increases, the volumetric strain’s dilatancy turning point is advanced, and the effect of particle shape becomes progressively more pronounced. Under varying conditions of particle shape and matric suction, the alteration in bedding angle affects the peak deviator stress and stress ratio, albeit the extent of this influence is limited.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The effect of particle shape and bedding angle on mechanical properties of Ili loess under low matric suction\",\"authors\":\"Yangyang Hu,&nbsp;Liangfu Xie,&nbsp;Jianhu Wang,&nbsp;Wei Mao,&nbsp;Kai Zhao,&nbsp;Dean Sun\",\"doi\":\"10.1007/s10064-024-04069-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Through extensive laboratory experiments on unsaturated soils, it has been discovered that particle shape and matric suction significantly influence their mechanical properties. Prior studies have typically examined these factors individually and from a macroscopic perspective. In this study, the aspect ratio is utilized as a representative parameter for particle shape. Employing the Hill constitutive model, a series of triaxial shear numerical experiments of simulations on unsaturated soil were conducted. The results indicate a non-linear relationship between peak deviator stress and aspect ratio, with peak deviator stress initially increasing, then decreasing, and reaching its maximum at an aspect ratio of 1.2. The patterns observed in friction angle, cohesion, and critical stress ratio in relation to aspect ratio mirror those seen in peak deviator stress, with the friction angle exhibiting fluctuations as the particle aspect ratio increases. At a matric suction of 0 kPa, changes in particle shape have a negligible impact on mechanical properties. However, as matric suction increases, the volumetric strain’s dilatancy turning point is advanced, and the effect of particle shape becomes progressively more pronounced. Under varying conditions of particle shape and matric suction, the alteration in bedding angle affects the peak deviator stress and stress ratio, albeit the extent of this influence is limited.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-024-04069-y\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-024-04069-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

通过对非饱和土的大量室内试验,发现颗粒形状和基质吸力对非饱和土的力学性能有显著影响。先前的研究通常从宏观角度单独考察这些因素。在本研究中,采用长宽比作为颗粒形状的代表性参数。采用Hill本构模型,对非饱和土进行了三轴剪切模拟数值试验。结果表明,峰值偏应力与纵横比呈非线性关系,峰值偏应力先增大后减小,并在纵横比为1.2时达到最大值。观察到的摩擦角、黏聚力和临界应力比与长径比的关系模式反映了峰值偏差应力,摩擦角随着颗粒长径比的增加而波动。在0 kPa的基质吸力下,颗粒形状的变化对力学性能的影响可以忽略不计。然而,随着基质吸力的增大,体积应变的扩容拐点提前,颗粒形状的影响逐渐明显。在颗粒形状和基质吸力不同的条件下,层理角的变化会影响峰值偏应力和应力比,但影响程度有限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The effect of particle shape and bedding angle on mechanical properties of Ili loess under low matric suction

Through extensive laboratory experiments on unsaturated soils, it has been discovered that particle shape and matric suction significantly influence their mechanical properties. Prior studies have typically examined these factors individually and from a macroscopic perspective. In this study, the aspect ratio is utilized as a representative parameter for particle shape. Employing the Hill constitutive model, a series of triaxial shear numerical experiments of simulations on unsaturated soil were conducted. The results indicate a non-linear relationship between peak deviator stress and aspect ratio, with peak deviator stress initially increasing, then decreasing, and reaching its maximum at an aspect ratio of 1.2. The patterns observed in friction angle, cohesion, and critical stress ratio in relation to aspect ratio mirror those seen in peak deviator stress, with the friction angle exhibiting fluctuations as the particle aspect ratio increases. At a matric suction of 0 kPa, changes in particle shape have a negligible impact on mechanical properties. However, as matric suction increases, the volumetric strain’s dilatancy turning point is advanced, and the effect of particle shape becomes progressively more pronounced. Under varying conditions of particle shape and matric suction, the alteration in bedding angle affects the peak deviator stress and stress ratio, albeit the extent of this influence is limited.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of Engineering Geology and the Environment
Bulletin of Engineering Geology and the Environment 工程技术-地球科学综合
CiteScore
7.10
自引率
11.90%
发文量
445
审稿时长
4.1 months
期刊介绍: Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces: • the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations; • the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change; • the assessment of the mechanical and hydrological behaviour of soil and rock masses; • the prediction of changes to the above properties with time; • the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.
期刊最新文献
Influence of topography on the fragmentation and mobility of landslides Experimental investigation of the mechanical behaviour of sand-rubber-gravel mixtures Study on macroscopic and microscopic damage and evolution of coal rock based on acoustic emission time-varying characteristics Failure mechanism and mechanical analysis in horizontal bedded surrounding rock with high in-situ stress An experimental study on the characterization and durability of two building low-porous trachyte and gabbro
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1