A. V. Reshetnikov, V. G. Pastukhov, V. N. Skokov, A. A. Akashev, A. V. Vinogradov, V. P. Koverda
{"title":"沸腾危机的诊断","authors":"A. V. Reshetnikov, V. G. Pastukhov, V. N. Skokov, A. A. Akashev, A. V. Vinogradov, V. P. Koverda","doi":"10.1134/S1810232824040131","DOIUrl":null,"url":null,"abstract":"<p>The results of experimental investigation of thermal pulsations in nucleate and film modes of water boiling under Joule heating of a wire heater and a porous cylindrical rod are presented. Pulsation power spectra have been determined from experimental data. It has been shown that in the transition modes of boiling from nucleate to film boiling the frequency dependence of the power spectra acquires a characteristic <span>\\(1/f\\)</span> form. Such frequency dependence of the spectra indicates the possibility of large-scale low-frequency emissions. The pulsation power spectra found from experimental data can be used to diagnose the transition to the crisis mode of heat transfer.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"833 - 839"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnostics of Boiling Crisis\",\"authors\":\"A. V. Reshetnikov, V. G. Pastukhov, V. N. Skokov, A. A. Akashev, A. V. Vinogradov, V. P. Koverda\",\"doi\":\"10.1134/S1810232824040131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The results of experimental investigation of thermal pulsations in nucleate and film modes of water boiling under Joule heating of a wire heater and a porous cylindrical rod are presented. Pulsation power spectra have been determined from experimental data. It has been shown that in the transition modes of boiling from nucleate to film boiling the frequency dependence of the power spectra acquires a characteristic <span>\\\\(1/f\\\\)</span> form. Such frequency dependence of the spectra indicates the possibility of large-scale low-frequency emissions. The pulsation power spectra found from experimental data can be used to diagnose the transition to the crisis mode of heat transfer.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 4\",\"pages\":\"833 - 839\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824040131\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040131","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
The results of experimental investigation of thermal pulsations in nucleate and film modes of water boiling under Joule heating of a wire heater and a porous cylindrical rod are presented. Pulsation power spectra have been determined from experimental data. It has been shown that in the transition modes of boiling from nucleate to film boiling the frequency dependence of the power spectra acquires a characteristic \(1/f\) form. Such frequency dependence of the spectra indicates the possibility of large-scale low-frequency emissions. The pulsation power spectra found from experimental data can be used to diagnose the transition to the crisis mode of heat transfer.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.