T. P. Adamova, A. Y. Manakov, D. S. Elistratov, A. A. Chernov
{"title":"表面活性剂界面泡沫溶液中甲烷水合物多晶聚集体形成的若干特征","authors":"T. P. Adamova, A. Y. Manakov, D. S. Elistratov, A. A. Chernov","doi":"10.1134/S1810232824040118","DOIUrl":null,"url":null,"abstract":"<p>The paper presents an experimental study of the process of methane hydrate formation from stabilized water foam. In all cases, the hydrate formation front started from the region inside the foam. Upon reaching the foam-solution boundary, it initiated the formation of polycrystalline conical conglomerates at this boundary - hydrate needles oriented deep into the solution. A mechanism for their formation and subsequent spontaneous shortening of some of them is proposed.</p>","PeriodicalId":627,"journal":{"name":"Journal of Engineering Thermophysics","volume":"33 4","pages":"804 - 809"},"PeriodicalIF":1.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Features of the Formation of Polycrystalline Conglomerates of Methane Hydrate at the Interface Foam—Solution of Surfactants\",\"authors\":\"T. P. Adamova, A. Y. Manakov, D. S. Elistratov, A. A. Chernov\",\"doi\":\"10.1134/S1810232824040118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents an experimental study of the process of methane hydrate formation from stabilized water foam. In all cases, the hydrate formation front started from the region inside the foam. Upon reaching the foam-solution boundary, it initiated the formation of polycrystalline conical conglomerates at this boundary - hydrate needles oriented deep into the solution. A mechanism for their formation and subsequent spontaneous shortening of some of them is proposed.</p>\",\"PeriodicalId\":627,\"journal\":{\"name\":\"Journal of Engineering Thermophysics\",\"volume\":\"33 4\",\"pages\":\"804 - 809\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Thermophysics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1810232824040118\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1134/S1810232824040118","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Some Features of the Formation of Polycrystalline Conglomerates of Methane Hydrate at the Interface Foam—Solution of Surfactants
The paper presents an experimental study of the process of methane hydrate formation from stabilized water foam. In all cases, the hydrate formation front started from the region inside the foam. Upon reaching the foam-solution boundary, it initiated the formation of polycrystalline conical conglomerates at this boundary - hydrate needles oriented deep into the solution. A mechanism for their formation and subsequent spontaneous shortening of some of them is proposed.
期刊介绍:
Journal of Engineering Thermophysics is an international peer reviewed journal that publishes original articles. The journal welcomes original articles on thermophysics from all countries in the English language. The journal focuses on experimental work, theory, analysis, and computational studies for better understanding of engineering and environmental aspects of thermophysics. The editorial board encourages the authors to submit papers with emphasis on new scientific aspects in experimental and visualization techniques, mathematical models of thermophysical process, energy, and environmental applications. Journal of Engineering Thermophysics covers all subject matter related to thermophysics, including heat and mass transfer, multiphase flow, conduction, radiation, combustion, thermo-gas dynamics, rarefied gas flow, environmental protection in power engineering, and many others.