不确定机械腿系统的神经网络自适应终端滑模轨迹跟踪控制

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-21 DOI:10.1007/s10489-025-06228-4
Minbo Chen, Likun Hu, Zifeng Liao
{"title":"不确定机械腿系统的神经网络自适应终端滑模轨迹跟踪控制","authors":"Minbo Chen,&nbsp;Likun Hu,&nbsp;Zifeng Liao","doi":"10.1007/s10489-025-06228-4","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes an adaptive terminal sliding mode control based on neural block approximation for mechanical leg systems characterized by uncertainty and external disturbances. This control is based on a dynamic model of the mechanical leg and introduces an ideal system trajectory as a constraint. The structure of the paper is as follows. First, the RBF neural network is used to approximate the parameters of the dynamic model in blocks. This process is supplemented with a nonsingular terminal sliding mode surface to accelerate the convergence of tracking errors, and an adaptive law is used to adjust weights online to reconstruct the mechanical leg model. Next, an integral sliding mode control robust component is provided to mitigate external disturbances and correct model inaccuracies. Within this step, the Lyapunov method is used to prove the finite-time stability and uniform boundedness of the control system. Finally, the algorithm is validated and tested using the CAPACE rapid control system on a three-degree-of-freedom mechanical leg platform. The experimental results show that the proposed RBFTSM algorithm performs well in the performance evaluation of the MASE and RMSE values, with high trajectory tracking accuracy, anti-interference ability and strong robustness. Further evidence is presented to demonstrate the effectiveness and practicality of the proposed method.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural network adaptive terminal sliding mode trajectory tracking control for mechanical leg systems with uncertainty\",\"authors\":\"Minbo Chen,&nbsp;Likun Hu,&nbsp;Zifeng Liao\",\"doi\":\"10.1007/s10489-025-06228-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes an adaptive terminal sliding mode control based on neural block approximation for mechanical leg systems characterized by uncertainty and external disturbances. This control is based on a dynamic model of the mechanical leg and introduces an ideal system trajectory as a constraint. The structure of the paper is as follows. First, the RBF neural network is used to approximate the parameters of the dynamic model in blocks. This process is supplemented with a nonsingular terminal sliding mode surface to accelerate the convergence of tracking errors, and an adaptive law is used to adjust weights online to reconstruct the mechanical leg model. Next, an integral sliding mode control robust component is provided to mitigate external disturbances and correct model inaccuracies. Within this step, the Lyapunov method is used to prove the finite-time stability and uniform boundedness of the control system. Finally, the algorithm is validated and tested using the CAPACE rapid control system on a three-degree-of-freedom mechanical leg platform. The experimental results show that the proposed RBFTSM algorithm performs well in the performance evaluation of the MASE and RMSE values, with high trajectory tracking accuracy, anti-interference ability and strong robustness. Further evidence is presented to demonstrate the effectiveness and practicality of the proposed method.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"55 5\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-025-06228-4\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06228-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

针对具有不确定性和外部干扰的机械腿系统,提出了一种基于神经块逼近的自适应终端滑模控制方法。该控制基于机械腿的动力学模型,并引入理想系统轨迹作为约束。本文的结构如下。首先,利用RBF神经网络对分块动态模型参数进行逼近。在此过程中加入非奇异终端滑模曲面加速跟踪误差的收敛,并采用自适应律在线调整权值重建机械腿模型。其次,提供了一个积分滑模控制鲁棒组件,以减轻外部干扰和纠正模型不准确性。在此步骤中,利用Lyapunov方法证明了控制系统的有限时间稳定性和一致有界性。最后,利用CAPACE快速控制系统在三自由度机械腿平台上对算法进行了验证和测试。实验结果表明,提出的RBFTSM算法在MASE和RMSE值的性能评估中表现良好,具有较高的轨迹跟踪精度、抗干扰能力和较强的鲁棒性。进一步证明了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Neural network adaptive terminal sliding mode trajectory tracking control for mechanical leg systems with uncertainty

This paper proposes an adaptive terminal sliding mode control based on neural block approximation for mechanical leg systems characterized by uncertainty and external disturbances. This control is based on a dynamic model of the mechanical leg and introduces an ideal system trajectory as a constraint. The structure of the paper is as follows. First, the RBF neural network is used to approximate the parameters of the dynamic model in blocks. This process is supplemented with a nonsingular terminal sliding mode surface to accelerate the convergence of tracking errors, and an adaptive law is used to adjust weights online to reconstruct the mechanical leg model. Next, an integral sliding mode control robust component is provided to mitigate external disturbances and correct model inaccuracies. Within this step, the Lyapunov method is used to prove the finite-time stability and uniform boundedness of the control system. Finally, the algorithm is validated and tested using the CAPACE rapid control system on a three-degree-of-freedom mechanical leg platform. The experimental results show that the proposed RBFTSM algorithm performs well in the performance evaluation of the MASE and RMSE values, with high trajectory tracking accuracy, anti-interference ability and strong robustness. Further evidence is presented to demonstrate the effectiveness and practicality of the proposed method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1