Gaochao Lin, Wei Liu, Fang Yang, He Wang, Xiaozheng Cui, Xing Su, Sichun Yu, Jiasheng Lian
{"title":"砂-橡胶-碎石混合料力学特性试验研究","authors":"Gaochao Lin, Wei Liu, Fang Yang, He Wang, Xiaozheng Cui, Xing Su, Sichun Yu, Jiasheng Lian","doi":"10.1007/s10064-025-04109-1","DOIUrl":null,"url":null,"abstract":"<div><p>This study explores the mechanical behavior and properties of sand-rubber-gravel (SRG) mixtures under various testing conditions. Through an extensive series of experimental tests—including direct shear, oedometer, saturated and unsaturated triaxial, and cyclic triaxial tests—the effects of rubber and gravel additions on sandy soil are systematically evaluated. The findings reveal that the appropriate content of rubber and gravel is crucial for ensuring the improvement of soil properties. An insufficient addition may not significantly enhance the soil’s properties, while an excessive amount can lead to a deterioration of its mechanical characteristics. With the optimal mixture ratio, test results show significant improvements in shear strength and deformation resistance of the SRG mixtures compared to pure sand. Under saturated and unsaturated conditions, the SRG mixtures demonstrate enhanced bearing capacity. In addition, dynamic response of SRG mixtures to varying cyclic loads are revealed through cyclic triaxial tests. The study confirms the feasibility and effectiveness of using SRG mixtures to improve the mechanical properties of sandy soils, suggesting their potential for diverse geotechnical applications.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of the mechanical behaviour of sand-rubber-gravel mixtures\",\"authors\":\"Gaochao Lin, Wei Liu, Fang Yang, He Wang, Xiaozheng Cui, Xing Su, Sichun Yu, Jiasheng Lian\",\"doi\":\"10.1007/s10064-025-04109-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study explores the mechanical behavior and properties of sand-rubber-gravel (SRG) mixtures under various testing conditions. Through an extensive series of experimental tests—including direct shear, oedometer, saturated and unsaturated triaxial, and cyclic triaxial tests—the effects of rubber and gravel additions on sandy soil are systematically evaluated. The findings reveal that the appropriate content of rubber and gravel is crucial for ensuring the improvement of soil properties. An insufficient addition may not significantly enhance the soil’s properties, while an excessive amount can lead to a deterioration of its mechanical characteristics. With the optimal mixture ratio, test results show significant improvements in shear strength and deformation resistance of the SRG mixtures compared to pure sand. Under saturated and unsaturated conditions, the SRG mixtures demonstrate enhanced bearing capacity. In addition, dynamic response of SRG mixtures to varying cyclic loads are revealed through cyclic triaxial tests. The study confirms the feasibility and effectiveness of using SRG mixtures to improve the mechanical properties of sandy soils, suggesting their potential for diverse geotechnical applications.</p></div>\",\"PeriodicalId\":500,\"journal\":{\"name\":\"Bulletin of Engineering Geology and the Environment\",\"volume\":\"84 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of Engineering Geology and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10064-025-04109-1\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04109-1","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Experimental investigation of the mechanical behaviour of sand-rubber-gravel mixtures
This study explores the mechanical behavior and properties of sand-rubber-gravel (SRG) mixtures under various testing conditions. Through an extensive series of experimental tests—including direct shear, oedometer, saturated and unsaturated triaxial, and cyclic triaxial tests—the effects of rubber and gravel additions on sandy soil are systematically evaluated. The findings reveal that the appropriate content of rubber and gravel is crucial for ensuring the improvement of soil properties. An insufficient addition may not significantly enhance the soil’s properties, while an excessive amount can lead to a deterioration of its mechanical characteristics. With the optimal mixture ratio, test results show significant improvements in shear strength and deformation resistance of the SRG mixtures compared to pure sand. Under saturated and unsaturated conditions, the SRG mixtures demonstrate enhanced bearing capacity. In addition, dynamic response of SRG mixtures to varying cyclic loads are revealed through cyclic triaxial tests. The study confirms the feasibility and effectiveness of using SRG mixtures to improve the mechanical properties of sandy soils, suggesting their potential for diverse geotechnical applications.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.