使用多种适体组合减少巨噬细胞对氧化低密度脂蛋白的摄取。

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2025-01-20 Epub Date: 2025-01-06 DOI:10.1021/acsabm.4c01432
Soemwit Khongwichit, Piyawut Swangphon, Aekkaraj Nualla-Ong, Napat Prompat, Maliwan Amatatongchai, Peter A Lieberzeit, Suticha Chunta
{"title":"使用多种适体组合减少巨噬细胞对氧化低密度脂蛋白的摄取。","authors":"Soemwit Khongwichit, Piyawut Swangphon, Aekkaraj Nualla-Ong, Napat Prompat, Maliwan Amatatongchai, Peter A Lieberzeit, Suticha Chunta","doi":"10.1021/acsabm.4c01432","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"8 1","pages":"457-474"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752521/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations.\",\"authors\":\"Soemwit Khongwichit, Piyawut Swangphon, Aekkaraj Nualla-Ong, Napat Prompat, Maliwan Amatatongchai, Peter A Lieberzeit, Suticha Chunta\",\"doi\":\"10.1021/acsabm.4c01432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":\"8 1\",\"pages\":\"457-474\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752521/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsabm.4c01432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsabm.4c01432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

氧化低密度脂蛋白(oxLDL)在巨噬细胞中的积累导致泡沫细胞的形成和动脉粥样硬化的发展。减少巨噬细胞对oxLDL的摄取可减少动脉粥样硬化的发生和进展。选择了四个不同的单链DNA序列,即AP07, AP11, AP25和AP29,它们与氧化载脂蛋白B100 (apoB100;(oxLDL的蛋白质成分)HDOCK评分低。将这四个DNA序列组合生成适配体,该适配体选择性结合标记的Dil-oxLDL,随后将其添加到小鼠RAW 264.7巨噬细胞中,使用荧光光谱法检测其抑制作用。与未处理适配体组相比,4个组合适配体在10 μM时降低了79±4%的oxLDL摄取。流式细胞术数据显示,适配体处理的巨噬细胞仅达到32.6%的Dil-oxLDL信号,荧光发射比未处理组(64.4%的Dil-oxLDL信号)降低50%。通过循环伏安法将四个组合的适体结合到oxLDL表面,破坏了oxLDL和CD36之间的相互作用,有效地降低了巨噬细胞对oxLDL的摄取水平。结果表明,这些适体可以作为替代化合物来阻止泡沫细胞的形成,从而具有抗动脉粥样硬化的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reduced Uptake of Oxidized Low-Density Lipoprotein by Macrophages Using Multiple Aptamer Combinations.

The accumulation of oxidized low-density lipoprotein (oxLDL) in macrophages leads to the formation of foam cells and atherosclerosis development. Reducing the uptake of oxLDL in macrophages decreases the incidence and progression of atherosclerosis. Four distinct single-strand DNA sequences, namely, AP07, AP11, AP25, and AP29, were selected that demonstrated specific binding to distinct regions of oxidized apolipoprotein B100 (apoB100; the protein component of oxLDL) with low HDOCK scores. These four DNA sequences were combined to generate aptamers that selectively bound to labeled Dil-oxLDL, and were subsequently added to murine RAW 264.7 macrophages to test their inhibitory effects using fluorescence spectrometry. The four combined aptamers at 10 μM reduced oxLDL uptake by 79 ± 4% compared to that of the untreated aptamer group. Flow cytometry data demonstrated that macrophages treated with aptamers reached only 32.6% of the Dil-oxLDL signal, a 50% reduction in fluorescence emission relative to that of the untreated group (64.4% Dil-oxLDL signal). Binding the four combined aptamers to the oxLDL surface disrupted the interaction between oxLDL and CD36 via cyclic voltammetry, effectively decreasing the level of uptake of oxLDL by macrophages. Results suggested that these aptamers could be used as alternative compounds to prevent the formation of foam cells, hence providing antiatherosclerosis activity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Dual Targeting of Prostate-Specific Membrane Antigen and Fibroblast Activation Protein: Bridging Prostate Cancer Theranostics with Precision. Anti-Infective Bacteriophage Immobilized Nitric Oxide-Releasing Surface for Prevention of Thrombosis and Device-Associated Infections. An Injectable Alginate Hydrogel Modified by Collagen and Fibronectin for Better Cellular Environment. Durable Bio-Based Hydrophobic Recrystallized Wax Coatings. Effect of Gadolinium Doping on the Optical and Magnetic Properties of Red-Emitting Dual-Mode Carbon Dot-Based Probes for Magnetic Resonance Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1