{"title":"利用铁热光电子效应实现极化比可控的二维钙钛矿异质结自供电光电探测器。","authors":"Xiaoran Yang, Binyi Zhou, Meitong Guo, Yao Liu, Ridong Cong, Leipeng Li, Wenqiang Wu, Shufang Wang, Linjuan Guo, Caofeng Pan, Zheng Yang","doi":"10.1002/advs.202414422","DOIUrl":null,"url":null,"abstract":"<p><p>Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented. By varying the amplitude and direction of ferroelectric polarization voltage, the built-in electric field in the heterojunction can be modulated, allowing for controllable PR regulation and adjustable polarization characteristics. Moreover, the polarized pyroelectric photoresponses are realized, significantly enhancing the responsivity, response speed of the polarized PDs. Both the pyroelectric currents and photocurrents exhibit obvious polarization characteristics. This method's versatility is demonstrated by creating three additional quasi-2D MHP ferroelectric-based polarized-sensitive PDs. A proof-of-concept for encrypted optical communication is achieved using the UV-sensitive PDs as light-sensing units. These findings highlight FPPE's potential to enhance ferroelectric device polarization control, enabling high-performance and self-powered polarization photodetection.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2414422"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect.\",\"authors\":\"Xiaoran Yang, Binyi Zhou, Meitong Guo, Yao Liu, Ridong Cong, Leipeng Li, Wenqiang Wu, Shufang Wang, Linjuan Guo, Caofeng Pan, Zheng Yang\",\"doi\":\"10.1002/advs.202414422\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented. By varying the amplitude and direction of ferroelectric polarization voltage, the built-in electric field in the heterojunction can be modulated, allowing for controllable PR regulation and adjustable polarization characteristics. Moreover, the polarized pyroelectric photoresponses are realized, significantly enhancing the responsivity, response speed of the polarized PDs. Both the pyroelectric currents and photocurrents exhibit obvious polarization characteristics. This method's versatility is demonstrated by creating three additional quasi-2D MHP ferroelectric-based polarized-sensitive PDs. A proof-of-concept for encrypted optical communication is achieved using the UV-sensitive PDs as light-sensing units. These findings highlight FPPE's potential to enhance ferroelectric device polarization control, enabling high-performance and self-powered polarization photodetection.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2414422\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202414422\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202414422","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect.
Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented. By varying the amplitude and direction of ferroelectric polarization voltage, the built-in electric field in the heterojunction can be modulated, allowing for controllable PR regulation and adjustable polarization characteristics. Moreover, the polarized pyroelectric photoresponses are realized, significantly enhancing the responsivity, response speed of the polarized PDs. Both the pyroelectric currents and photocurrents exhibit obvious polarization characteristics. This method's versatility is demonstrated by creating three additional quasi-2D MHP ferroelectric-based polarized-sensitive PDs. A proof-of-concept for encrypted optical communication is achieved using the UV-sensitive PDs as light-sensing units. These findings highlight FPPE's potential to enhance ferroelectric device polarization control, enabling high-performance and self-powered polarization photodetection.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.