{"title":"硬壳与软核结合增强酶活性,抵抗外界干扰。","authors":"Yiwen Wang, Hongfei Tong, Shulan Ni, Kaiyuan Huo, Wenjie Liu, Xingjie Zan, Xiaodie Yuan, Shuangshuang Wang","doi":"10.1002/advs.202411196","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411196"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.\",\"authors\":\"Yiwen Wang, Hongfei Tong, Shulan Ni, Kaiyuan Huo, Wenjie Liu, Xingjie Zan, Xiaodie Yuan, Shuangshuang Wang\",\"doi\":\"10.1002/advs.202411196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2411196\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202411196\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411196","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.
Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.