硬壳与软核结合增强酶活性,抵抗外界干扰。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-22 DOI:10.1002/advs.202411196
Yiwen Wang, Hongfei Tong, Shulan Ni, Kaiyuan Huo, Wenjie Liu, Xingjie Zan, Xiaodie Yuan, Shuangshuang Wang
{"title":"硬壳与软核结合增强酶活性,抵抗外界干扰。","authors":"Yiwen Wang, Hongfei Tong, Shulan Ni, Kaiyuan Huo, Wenjie Liu, Xingjie Zan, Xiaodie Yuan, Shuangshuang Wang","doi":"10.1002/advs.202411196","DOIUrl":null,"url":null,"abstract":"<p><p>Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2411196"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.\",\"authors\":\"Yiwen Wang, Hongfei Tong, Shulan Ni, Kaiyuan Huo, Wenjie Liu, Xingjie Zan, Xiaodie Yuan, Shuangshuang Wang\",\"doi\":\"10.1002/advs.202411196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2411196\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202411196\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202411196","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

将酶固定在固体载体上具有增强的催化活性和对恶劣外部条件的抗性,被认为是扩大酶在生物传感、生物催化和生物医学设备中的应用的一种有前途和关键的方法;然而,由于战略有限,它受到了很大的阻碍。本研究创新性地开发了一种涉及软核六组氨酸金属组装(HmA)的核-壳策略,并以包封酶(过氧化氢酶(CAT)、辣根过氧化物酶、葡萄糖氧化酶(GOx)和级联酶(CAT+GOx))和硬多孔壳(沸石咪唑酸框架(ZIF)、ZIF-8、ZIF-67、ZIF-90、碳酸钙和羟基磷灰石)为特征。嵌入的HmA提供的酶友好环境被证明有利于增强催化活性,这在保存脆弱的酶方面特别有效,这些酶在多孔壳矿化过程中如果没有HmA核心就会失活。包裹在核壳颗粒内的酶在恶劣的外部条件下表现出显著的弹性,包括热、有机溶剂和蛋白酶k。此外,在多次使用循环后,酶的催化行为没有明显的变化。该研究提供了一种新的固定化酶并使其抵抗恶劣外界条件的方法,在生物催化、生物修复和生物医学工程等领域具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combining Hard Shell with Soft Core to Enhance Enzyme Activity and Resist External Disturbances.

Immobilizing enzymes onto solid supports having enhanced catalytic activity and resistance to harsh external conditions is considered as a promising and critical method of broadening enzymatic applications in biosensing, biocatalysis, and biomedical devices; however, it is considerably hampered by limited strategies. Here, a core-shell strategy involving a soft-core hexahistidine metal assembly (HmA) is innovatively developed and characterized with encapsulated enzymes (catalase (CAT), horseradish peroxidase, glucose oxidase (GOx), and cascade enzymes (CAT+GOx)) and hard porous shells (zeolitic imidazolate framework (ZIF), ZIF-8, ZIF-67, ZIF-90, calcium carbonate, and hydroxyapatite). The enzyme-friendly environment provided by the embedded HmA proves beneficial for enhanced catalytic activity, which is particularly effective in preserving fragile enzymes that will have been deactivated without the HmA core during the mineralization of porous shells. The enzyme encapsulated within a core-shell particle exhibits noteworthy resilience against harsh external conditions, including heat, organic solvents, and proteinase K. Additionally, no significant alteration in the catalytic behavior of the enzyme is observed after multiple cycles of usage. This study offers a novel approach for immobilizing enzymes and rendering them resistant to harsh external conditions, with potential applications in diverse fields, including biocatalysis, bioremediation, and biomedical engineering.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
In Situ Analysis of Li Plating and Stripping Behaviors Under Dynamic Current Conditions for Realistic Application Scenarios. Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations. Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications. Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration. Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1