双靶向仿生无载体纳米系统通过巨噬细胞凋亡和再极化治疗类风湿关节炎。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-22 DOI:10.1002/advs.202406877
Guanghe Xue, Huimei Jiang, Zhenhua Song, Yifan Zhao, Wen Gao, Bai Lv, Jie Cao
{"title":"双靶向仿生无载体纳米系统通过巨噬细胞凋亡和再极化治疗类风湿关节炎。","authors":"Guanghe Xue, Huimei Jiang, Zhenhua Song, Yifan Zhao, Wen Gao, Bai Lv, Jie Cao","doi":"10.1002/advs.202406877","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA. Here, dual-targeting biomimetic carrier-free nanomaterials (BSA-MTX-CyI nanosystem, BMC) is developed for synergistic photo-chemotherapy of RA. Bovine serum albumin (BSA), which has high affinity with SPARC (secreted protein acidic and rich in cysteine) in the RA joint microenvironment, is selected as the hydrophilic end and coupled with MTX and the phototherapeutic agent CyI to self-assemble into BMC. In vitro and in vivo experiments revealed that BMC accumulated significantly at the joint site in collagen antibody-induced arthritis mice and could be specifically recognized and taken up by folate receptors in proinflammatory M1 macrophages. Upon near-infrared laser irradiation, CyI exerted photodynamic and photothermal effects, whereas MTX not only inhibited cell proliferation but also increased cell sensitivity to reactive oxygen species, enhancing the apoptotic effect induced by CyI and achieving synergistic photo-chemotherapy. Moreover, BMC could induce macrophages to reprogram into anti-inflammatory M2 macrophages. This study provides innovative approaches for RA treatment via macrophage apoptosis and re-polarization.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2406877"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Targeting Biomimetic Carrier-Free Nanosystems for Photo-Chemotherapy of Rheumatoid Arthritis via Macrophage Apoptosis and Re-Polarization.\",\"authors\":\"Guanghe Xue, Huimei Jiang, Zhenhua Song, Yifan Zhao, Wen Gao, Bai Lv, Jie Cao\",\"doi\":\"10.1002/advs.202406877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA. Here, dual-targeting biomimetic carrier-free nanomaterials (BSA-MTX-CyI nanosystem, BMC) is developed for synergistic photo-chemotherapy of RA. Bovine serum albumin (BSA), which has high affinity with SPARC (secreted protein acidic and rich in cysteine) in the RA joint microenvironment, is selected as the hydrophilic end and coupled with MTX and the phototherapeutic agent CyI to self-assemble into BMC. In vitro and in vivo experiments revealed that BMC accumulated significantly at the joint site in collagen antibody-induced arthritis mice and could be specifically recognized and taken up by folate receptors in proinflammatory M1 macrophages. Upon near-infrared laser irradiation, CyI exerted photodynamic and photothermal effects, whereas MTX not only inhibited cell proliferation but also increased cell sensitivity to reactive oxygen species, enhancing the apoptotic effect induced by CyI and achieving synergistic photo-chemotherapy. Moreover, BMC could induce macrophages to reprogram into anti-inflammatory M2 macrophages. This study provides innovative approaches for RA treatment via macrophage apoptosis and re-polarization.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2406877\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202406877\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202406877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

类风湿性关节炎(RA)是一种常见的慢性全身自身免疫性疾病,常导致不可逆的关节侵蚀和残疾。甲氨蝶呤(MTX)是治疗类风湿性关节炎的一线药物,但长期服用的显著副作用限制了其使用。因此,需要新的治疗策略来治疗RA。本研究开发了双靶向仿生无载体纳米材料(BSA-MTX-CyI纳米系统,BMC),用于RA的协同光化学治疗。选取RA关节微环境中与SPARC(酸性分泌蛋白,富含半胱氨酸)亲和力高的牛血清白蛋白(Bovine serum albumin, BSA)作为亲水性末端,与MTX、光疗剂CyI偶联自组装成BMC。体外和体内实验表明,BMC在胶原抗体诱导的关节炎小鼠关节部位显著积累,可被促炎M1巨噬细胞中的叶酸受体特异性识别和摄取。在近红外激光照射下,CyI发挥光动力和光热作用,而MTX不仅抑制细胞增殖,而且增加细胞对活性氧的敏感性,增强CyI诱导的凋亡效应,实现协同光化学治疗。BMC可诱导巨噬细胞重编程为抗炎M2巨噬细胞。本研究为通过巨噬细胞凋亡和再极化治疗RA提供了创新的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Targeting Biomimetic Carrier-Free Nanosystems for Photo-Chemotherapy of Rheumatoid Arthritis via Macrophage Apoptosis and Re-Polarization.

Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that often results in irreversible joint erosion and disability. Methotrexate (MTX) is the first-line drug against RA, but the significant side effects of long-term administration limit its use. Therefore, new therapeutic strategies are needed for treating RA. Here, dual-targeting biomimetic carrier-free nanomaterials (BSA-MTX-CyI nanosystem, BMC) is developed for synergistic photo-chemotherapy of RA. Bovine serum albumin (BSA), which has high affinity with SPARC (secreted protein acidic and rich in cysteine) in the RA joint microenvironment, is selected as the hydrophilic end and coupled with MTX and the phototherapeutic agent CyI to self-assemble into BMC. In vitro and in vivo experiments revealed that BMC accumulated significantly at the joint site in collagen antibody-induced arthritis mice and could be specifically recognized and taken up by folate receptors in proinflammatory M1 macrophages. Upon near-infrared laser irradiation, CyI exerted photodynamic and photothermal effects, whereas MTX not only inhibited cell proliferation but also increased cell sensitivity to reactive oxygen species, enhancing the apoptotic effect induced by CyI and achieving synergistic photo-chemotherapy. Moreover, BMC could induce macrophages to reprogram into anti-inflammatory M2 macrophages. This study provides innovative approaches for RA treatment via macrophage apoptosis and re-polarization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
In Situ Analysis of Li Plating and Stripping Behaviors Under Dynamic Current Conditions for Realistic Application Scenarios. Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations. Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications. Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration. Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1