丝素-2稳定组蛋白甲基转移酶KMT2C抑制三阴性乳腺癌的进展并赋予对PARP抑制的治疗敏感性

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Science Pub Date : 2025-01-21 DOI:10.1002/advs.202413280
Min-Ying Huang, Jia-Yang Cai, Shao-Ying Yang, Qian Zhao, Zhi-Min Shao, Fang-Lin Zhang, Yin-Ling Zhang, A-Yong Cao, Da-Qiang Li
{"title":"丝素-2稳定组蛋白甲基转移酶KMT2C抑制三阴性乳腺癌的进展并赋予对PARP抑制的治疗敏感性","authors":"Min-Ying Huang, Jia-Yang Cai, Shao-Ying Yang, Qian Zhao, Zhi-Min Shao, Fang-Lin Zhang, Yin-Ling Zhang, A-Yong Cao, Da-Qiang Li","doi":"10.1002/advs.202413280","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is a difficulty and bottleneck in the clinical treatment of breast cancer due to a lack of effective therapeutic targets. Herein, we first report that secernin 2 (SCRN2), an uncharacterized gene in human cancer, acts as a novel tumor suppressor in TNBC to inhibit cancer progression and enhance therapeutic sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. SCRN2 is downregulated in TNBC through chaperone-mediated autophagic degradation, and its downregulation is associated with poor patient prognosis. Moreover, SCRN2 impedes the proteasomal degradation of histone-lysine N-methyltransferase 2C (KMT2C) by recruiting Bcl2-associated athanogene 2 to block the interaction of KMT2C with E3 ubiquitin-protein ligase CHIP. Consistently, SCRN2 transcriptionally activates Bcl2-modifying factor by amplifying histone H3 monomethylation at lysine 4 at its enhancer, thereby inducing intrinsic apoptosis. Notably, KMT2C knockdown restores the impaired TNBC progression caused by SCRN2 overexpression both in vitro and in vivo. Furthermore, SCRN2 decreases the expression of key DNA repair-related genes and induces endogenous DNA damage, thus conferring therapeutic sensitivity of TNBC cells to PARP inhibition.   Collectively, these findings identify SCRN2 as a novel suppressor of TNBC, reveal its mechanism of action, and highlight its potential role in TNBC therapy.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413280"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Secernin-2 Stabilizes Histone Methyltransferase KMT2C to Suppress Progression and Confer Therapeutic Sensitivity to PARP Inhibition in Triple-Negative Breast Cancer.\",\"authors\":\"Min-Ying Huang, Jia-Yang Cai, Shao-Ying Yang, Qian Zhao, Zhi-Min Shao, Fang-Lin Zhang, Yin-Ling Zhang, A-Yong Cao, Da-Qiang Li\",\"doi\":\"10.1002/advs.202413280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Triple-negative breast cancer (TNBC) is a difficulty and bottleneck in the clinical treatment of breast cancer due to a lack of effective therapeutic targets. Herein, we first report that secernin 2 (SCRN2), an uncharacterized gene in human cancer, acts as a novel tumor suppressor in TNBC to inhibit cancer progression and enhance therapeutic sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. SCRN2 is downregulated in TNBC through chaperone-mediated autophagic degradation, and its downregulation is associated with poor patient prognosis. Moreover, SCRN2 impedes the proteasomal degradation of histone-lysine N-methyltransferase 2C (KMT2C) by recruiting Bcl2-associated athanogene 2 to block the interaction of KMT2C with E3 ubiquitin-protein ligase CHIP. Consistently, SCRN2 transcriptionally activates Bcl2-modifying factor by amplifying histone H3 monomethylation at lysine 4 at its enhancer, thereby inducing intrinsic apoptosis. Notably, KMT2C knockdown restores the impaired TNBC progression caused by SCRN2 overexpression both in vitro and in vivo. Furthermore, SCRN2 decreases the expression of key DNA repair-related genes and induces endogenous DNA damage, thus conferring therapeutic sensitivity of TNBC cells to PARP inhibition.   Collectively, these findings identify SCRN2 as a novel suppressor of TNBC, reveal its mechanism of action, and highlight its potential role in TNBC therapy.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2413280\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202413280\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413280","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于缺乏有效的治疗靶点,三阴性乳腺癌(TNBC)是乳腺癌临床治疗的难点和瓶颈。本文中,我们首次报道了人类癌症中一种未被发现的基因丝氨酸2 (SCRN2)在TNBC中作为一种新的肿瘤抑制因子,在体外和体内均可抑制癌症进展并增强对多聚腺苷核糖聚合酶(PARP)抑制的治疗敏感性。在TNBC中,SCRN2通过伴侣介导的自噬降解而下调,其下调与患者预后不良有关。此外,SCRN2通过募集bcl2相关的thanogene 2来阻断KMT2C与E3泛素蛋白连接酶CHIP的相互作用,从而阻碍组蛋白赖氨酸n-甲基转移酶2C (KMT2C)的蛋白酶体降解。与此一致的是,SCRN2通过在增强子赖氨酸4上扩增组蛋白H3单甲基化来激活bcl2修饰因子,从而诱导内在凋亡。值得注意的是,在体外和体内,KMT2C敲低可恢复由SCRN2过表达引起的TNBC进展受损。此外,SCRN2降低关键DNA修复相关基因的表达并诱导内源性DNA损伤,从而使TNBC细胞对PARP抑制具有治疗敏感性。总之,这些发现确定了SCRN2是一种新的TNBC抑制因子,揭示了其作用机制,并强调了其在TNBC治疗中的潜在作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Secernin-2 Stabilizes Histone Methyltransferase KMT2C to Suppress Progression and Confer Therapeutic Sensitivity to PARP Inhibition in Triple-Negative Breast Cancer.

Triple-negative breast cancer (TNBC) is a difficulty and bottleneck in the clinical treatment of breast cancer due to a lack of effective therapeutic targets. Herein, we first report that secernin 2 (SCRN2), an uncharacterized gene in human cancer, acts as a novel tumor suppressor in TNBC to inhibit cancer progression and enhance therapeutic sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition both in vitro and in vivo. SCRN2 is downregulated in TNBC through chaperone-mediated autophagic degradation, and its downregulation is associated with poor patient prognosis. Moreover, SCRN2 impedes the proteasomal degradation of histone-lysine N-methyltransferase 2C (KMT2C) by recruiting Bcl2-associated athanogene 2 to block the interaction of KMT2C with E3 ubiquitin-protein ligase CHIP. Consistently, SCRN2 transcriptionally activates Bcl2-modifying factor by amplifying histone H3 monomethylation at lysine 4 at its enhancer, thereby inducing intrinsic apoptosis. Notably, KMT2C knockdown restores the impaired TNBC progression caused by SCRN2 overexpression both in vitro and in vivo. Furthermore, SCRN2 decreases the expression of key DNA repair-related genes and induces endogenous DNA damage, thus conferring therapeutic sensitivity of TNBC cells to PARP inhibition.   Collectively, these findings identify SCRN2 as a novel suppressor of TNBC, reveal its mechanism of action, and highlight its potential role in TNBC therapy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
期刊最新文献
In Situ Analysis of Li Plating and Stripping Behaviors Under Dynamic Current Conditions for Realistic Application Scenarios. Micro-Scale Topography Triggers Dynamic 3D Nuclear Deformations. Peptide-Perovskite Based Bio-Inspired Materials for Optoelectronics Applications. Acid-Triggered Dual-Functional Hydrogel Platform for Enhanced Bone Regeneration. Endothelial TRIM35-Regulated MMP10 Release Exacerbates Calcification of Vascular Grafts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1