{"title":"Lobeline靶向MAPK14上调slurp1介导的TAM选择性激活抑制,延缓结直肠癌生长","authors":"Mingxia Zhao, Lisha Zhou, Qinchang Zhang, Meijing Wang, Yue Dong, Yue Wang, Ruixue Pei, Enguang He, Yanyan Liang, Yujun Shen, Guoliang Deng, Hongqi Chen, Dongdong Sun, Yuxian Shen, Yang Sun, Haibo Cheng","doi":"10.1002/advs.202407900","DOIUrl":null,"url":null,"abstract":"<p><p>Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs. Additionally, lobeline upregulates mRNA expression of secreted Ly-6/UPAR-related protein 1 (Slurp1) in cancer cells. The inhibitory effects of lobeline on tumor load and TAM polarization are almost completely eliminated when Slurp1-deficient MC38 cells are subcutaneously injected into mice, suggesting that lobeline exerts an antitumor effect in a Slurp1-dependent manner. Furthermore, using target-responsive accessibility profiling, MAPK14 is identified as the direct target protein of lobeline. Mechanistically, upon binding to MAPK14 in colon cancer cells, lobeline prevents nuclear translocation of MAPK14, resulting in decreased levels of phosphorylated p53. Consequently, negative transcriptional regulation of SLURP1 by p53 is suppressed, leading to enhanced transcription and secretion of SLURP1. Finally, combination therapy using lobeline and anti-PD1 exhibits stronger antitumor effects. Taken together, these findings suggest that remodeling the immunosuppressive microenvironment using small-molecule lobeline may represent a promising therapeutic strategy for CRC.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2407900"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.\",\"authors\":\"Mingxia Zhao, Lisha Zhou, Qinchang Zhang, Meijing Wang, Yue Dong, Yue Wang, Ruixue Pei, Enguang He, Yanyan Liang, Yujun Shen, Guoliang Deng, Hongqi Chen, Dongdong Sun, Yuxian Shen, Yang Sun, Haibo Cheng\",\"doi\":\"10.1002/advs.202407900\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs. Additionally, lobeline upregulates mRNA expression of secreted Ly-6/UPAR-related protein 1 (Slurp1) in cancer cells. The inhibitory effects of lobeline on tumor load and TAM polarization are almost completely eliminated when Slurp1-deficient MC38 cells are subcutaneously injected into mice, suggesting that lobeline exerts an antitumor effect in a Slurp1-dependent manner. Furthermore, using target-responsive accessibility profiling, MAPK14 is identified as the direct target protein of lobeline. Mechanistically, upon binding to MAPK14 in colon cancer cells, lobeline prevents nuclear translocation of MAPK14, resulting in decreased levels of phosphorylated p53. Consequently, negative transcriptional regulation of SLURP1 by p53 is suppressed, leading to enhanced transcription and secretion of SLURP1. Finally, combination therapy using lobeline and anti-PD1 exhibits stronger antitumor effects. Taken together, these findings suggest that remodeling the immunosuppressive microenvironment using small-molecule lobeline may represent a promising therapeutic strategy for CRC.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2407900\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202407900\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202407900","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Targeting MAPK14 by Lobeline Upregulates Slurp1-Mediated Inhibition of Alternative Activation of TAM and Retards Colorectal Cancer Growth.
Colorectal cancer (CRC) usually creates an immunosuppressive microenvironment, thereby hindering immunotherapy response. Effective treatment options remain elusive. Using scRNA-seq analysis in a tumor-bearing murine model, it is found that lobeline, an alkaloid from the herbal medicine lobelia, promotes polarization of tumor-associated macrophages (TAMs) toward M1-like TAMs while inhibiting their polarization toward M2-like TAMs. Additionally, lobeline upregulates mRNA expression of secreted Ly-6/UPAR-related protein 1 (Slurp1) in cancer cells. The inhibitory effects of lobeline on tumor load and TAM polarization are almost completely eliminated when Slurp1-deficient MC38 cells are subcutaneously injected into mice, suggesting that lobeline exerts an antitumor effect in a Slurp1-dependent manner. Furthermore, using target-responsive accessibility profiling, MAPK14 is identified as the direct target protein of lobeline. Mechanistically, upon binding to MAPK14 in colon cancer cells, lobeline prevents nuclear translocation of MAPK14, resulting in decreased levels of phosphorylated p53. Consequently, negative transcriptional regulation of SLURP1 by p53 is suppressed, leading to enhanced transcription and secretion of SLURP1. Finally, combination therapy using lobeline and anti-PD1 exhibits stronger antitumor effects. Taken together, these findings suggest that remodeling the immunosuppressive microenvironment using small-molecule lobeline may represent a promising therapeutic strategy for CRC.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.