CTLA4-Ig通过降低髓系细胞中的促炎基因表达来减轻杜氏肌营养不良模型中的肌纤维损伤。

IF 4.7 2区 医学 Q1 PATHOLOGY American Journal of Pathology Pub Date : 2025-01-13 DOI:10.1016/j.ajpath.2024.12.012
Michelle Wehling-Henricks, Su-Yin Kok, Haley Gamboa, Pranav Kannan, Connor Thomas, Ivan Flores, Steven S Welc, James G Tidball
{"title":"CTLA4-Ig通过降低髓系细胞中的促炎基因表达来减轻杜氏肌营养不良模型中的肌纤维损伤。","authors":"Michelle Wehling-Henricks, Su-Yin Kok, Haley Gamboa, Pranav Kannan, Connor Thomas, Ivan Flores, Steven S Welc, James G Tidball","doi":"10.1016/j.ajpath.2024.12.012","DOIUrl":null,"url":null,"abstract":"<p><p>Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a cytotoxic T-lymphocyte-associated protein 4 fused to a modified fragment of IgG1 (CTLA4-Ig) fusion protein that blocks costimulatory signals required for activation of T cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T cells, macrophages, and antigen-presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers. In vitro data showed that CTLA4-Ig acts directly on bone marrow cells and macrophages to modify their function and gene expression. CTLA4-Ig treatments of mdx bone marrow cells diminished their mobility and chemotactic response to chemokine ligand-2. Treating mdx macrophages with CTLA4-Ig reduced their cytolysis of muscle cells in vitro. RNA-sequencing analysis of mdx macrophages showed that CTLA4-Ig reduced expression of genes associated with leukocyte chemotaxis, migration, and extravasation; >90% of those affected genes were tumor necrosis factor-α target genes. Comparison of mdx and wild-type macrophages by RNA sequencing showed that 46% of the genes down-regulated by CTLA4-Ig were genes up-regulated in macrophages by the presence of muscular dystrophy in mice. These findings show that CTLA4-Ig is a promising immunotherapeutic for DMD, and many of its beneficial effects may result from direct actions on macrophages that modify their expression of proinflammatory genes.</p>","PeriodicalId":7623,"journal":{"name":"American Journal of Pathology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cytotoxic T-Lymphocyte-Associated Protein 4 Fused to a Modified Fragment of IgG1 Reduces Muscle Fiber Damage in a Model of Duchenne Muscular Dystrophy by Attenuating Proinflammatory Gene Expression in Myeloid Lineage Cells.\",\"authors\":\"Michelle Wehling-Henricks, Su-Yin Kok, Haley Gamboa, Pranav Kannan, Connor Thomas, Ivan Flores, Steven S Welc, James G Tidball\",\"doi\":\"10.1016/j.ajpath.2024.12.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a cytotoxic T-lymphocyte-associated protein 4 fused to a modified fragment of IgG1 (CTLA4-Ig) fusion protein that blocks costimulatory signals required for activation of T cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T cells, macrophages, and antigen-presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers. In vitro data showed that CTLA4-Ig acts directly on bone marrow cells and macrophages to modify their function and gene expression. CTLA4-Ig treatments of mdx bone marrow cells diminished their mobility and chemotactic response to chemokine ligand-2. Treating mdx macrophages with CTLA4-Ig reduced their cytolysis of muscle cells in vitro. RNA-sequencing analysis of mdx macrophages showed that CTLA4-Ig reduced expression of genes associated with leukocyte chemotaxis, migration, and extravasation; >90% of those affected genes were tumor necrosis factor-α target genes. Comparison of mdx and wild-type macrophages by RNA sequencing showed that 46% of the genes down-regulated by CTLA4-Ig were genes up-regulated in macrophages by the presence of muscular dystrophy in mice. These findings show that CTLA4-Ig is a promising immunotherapeutic for DMD, and many of its beneficial effects may result from direct actions on macrophages that modify their expression of proinflammatory genes.</p>\",\"PeriodicalId\":7623,\"journal\":{\"name\":\"American Journal of Pathology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Pathology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajpath.2024.12.012\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Pathology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajpath.2024.12.012","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

杜氏肌营养不良症(DMD)是一种致命的、肌肉萎缩的遗传性疾病,对患病肌肉的免疫反应极大地放大了这种疾病。使用mdx小鼠DMD模型来测试CTLA4-Ig融合蛋白是否可以通过阻断t细胞激活所需的共刺激信号来减少病理。CTLA4-Ig治疗减少mdx肌膜病变,减少mdx肌中活化的t细胞、巨噬细胞和抗原提呈细胞的数量,减少巨噬细胞对肌纤维的侵袭。体外数据显示,CTLA4-Ig直接作用于骨髓细胞和巨噬细胞,改变其功能和基因表达。CTLA4-Ig治疗mdx BMCs降低了它们的移动性和对趋化因子配体-2的趋化反应。在体外用CTLA4-Ig处理mdx巨噬细胞可减少其对肌肉细胞的细胞溶解。mdx巨噬细胞的RNA-seq分析显示,CTLA4-Ig降低了与白细胞趋化性、迁移和外渗相关基因的表达;>90%的受影响基因为TNFα靶基因。通过RNA-seq对mdx和野生型巨噬细胞的比较发现,CTLA4-Ig下调的基因中有46%是由于小鼠肌营养不良而在巨噬细胞中上调的基因。这些发现表明,CTLA4-Ig是一种很有前景的DMD免疫治疗药物,其许多有益作用可能来自于直接作用于巨噬细胞,改变其促炎基因的表达。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cytotoxic T-Lymphocyte-Associated Protein 4 Fused to a Modified Fragment of IgG1 Reduces Muscle Fiber Damage in a Model of Duchenne Muscular Dystrophy by Attenuating Proinflammatory Gene Expression in Myeloid Lineage Cells.

Duchenne muscular dystrophy (DMD) is a lethal, muscle-wasting, genetic disease that is greatly amplified by an immune response to the diseased muscles. The mdx mouse model of DMD was used to test whether the pathology can be reduced by treatments with a cytotoxic T-lymphocyte-associated protein 4 fused to a modified fragment of IgG1 (CTLA4-Ig) fusion protein that blocks costimulatory signals required for activation of T cells. CTLA4-Ig treatments reduced mdx sarcolemma lesions and reduced the numbers of activated T cells, macrophages, and antigen-presenting cells in mdx muscle and reduced macrophage invasion into muscle fibers. In vitro data showed that CTLA4-Ig acts directly on bone marrow cells and macrophages to modify their function and gene expression. CTLA4-Ig treatments of mdx bone marrow cells diminished their mobility and chemotactic response to chemokine ligand-2. Treating mdx macrophages with CTLA4-Ig reduced their cytolysis of muscle cells in vitro. RNA-sequencing analysis of mdx macrophages showed that CTLA4-Ig reduced expression of genes associated with leukocyte chemotaxis, migration, and extravasation; >90% of those affected genes were tumor necrosis factor-α target genes. Comparison of mdx and wild-type macrophages by RNA sequencing showed that 46% of the genes down-regulated by CTLA4-Ig were genes up-regulated in macrophages by the presence of muscular dystrophy in mice. These findings show that CTLA4-Ig is a promising immunotherapeutic for DMD, and many of its beneficial effects may result from direct actions on macrophages that modify their expression of proinflammatory genes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.40
自引率
0.00%
发文量
178
审稿时长
30 days
期刊介绍: The American Journal of Pathology, official journal of the American Society for Investigative Pathology, published by Elsevier, Inc., seeks high-quality original research reports, reviews, and commentaries related to the molecular and cellular basis of disease. The editors will consider basic, translational, and clinical investigations that directly address mechanisms of pathogenesis or provide a foundation for future mechanistic inquiries. Examples of such foundational investigations include data mining, identification of biomarkers, molecular pathology, and discovery research. Foundational studies that incorporate deep learning and artificial intelligence are also welcome. High priority is given to studies of human disease and relevant experimental models using molecular, cellular, and organismal approaches.
期刊最新文献
Correction Table of Contents Editorial Board The mRNA Stability of PIEZO1, Regulated by Methyltransferase-Like 3 via N6-Methylation of Adenosine Modification in a YT521-B Homology Domain Family 2–Dependent Manner, Facilitates the Progression of Diabetic Retinopathy Ablation of CD44 Attenuates Adipogenesis in White Adipocytes via the Tryptophan 5-Hydroxylase 2/5-Hydroxytryptamine Axis to Protect Mice from High-Fat Diet–Induced Obesity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1