Miriam Goñi-Olóriz, Mattie Garaikoetxea Zubillaga, Susana San Ildefonso-García, Amaya Fernández-Celis, Paula Castillo, Adela Navarro, Virginia Álvarez, Rafael Sádaba, Eva Jover, Ernesto Martín-Núñez, Natalia López-Andrés
{"title":"Chemerin是由醛固酮/矿皮质激素受体轴调控的主动脉瓣狭窄合并糖尿病的一个新的性别特异性靶点。","authors":"Miriam Goñi-Olóriz, Mattie Garaikoetxea Zubillaga, Susana San Ildefonso-García, Amaya Fernández-Celis, Paula Castillo, Adela Navarro, Virginia Álvarez, Rafael Sádaba, Eva Jover, Ernesto Martín-Núñez, Natalia López-Andrés","doi":"10.1152/ajpheart.00763.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM. We performed discovery studies using Olink Proteomics® technology in 87 AS patient-derived aortic valves (AVs) (N=28 and N=19 non-diabetic and diabetic men; N=32 and N=8 non-diabetic and diabetic women, respectively) and human cytokine array (N=24 AVs/sex/condition). Both approaches revealed chemerin as a target differentially upregulated in AVs from male diabetic patients, further validated in a cohort of stenotic AVs (N=283, 27.6% DM, 59.4% men). Valvular chemerin levels directly correlated with VIC activation, MR, inflammation, angiogenesis and calcification markers exclusively in diabetic men. <i>In vitro</i>, Aldo (10<sup>-8</sup>M) treatment exclusively increased chemerin levels in valve interstitial cells (VICs) from male DM patients. Aldo also upregulated inflammatory, angiogenic and osteogenic markers in DM and non-DM donors' VICs, which were prevented by MR antagonism. Increased glucose levels in cell media upregulated chemerin in VICs from male diabetic patients. Overall, <i>RARRES2</i>-knockdown in male diabetic VICs resulted in downregulation of inflammatory, angiogenic and osteogenic markers and blocked Aldo-induced responses in high glucose conditions. These data suggest the Aldo/MR pathway selectively increases chemerin in VICs from diabetic men, promoting inflammation, angiogenesis and calcification associated to AS progression.</p>","PeriodicalId":7692,"journal":{"name":"American journal of physiology. Heart and circulatory physiology","volume":" ","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.\",\"authors\":\"Miriam Goñi-Olóriz, Mattie Garaikoetxea Zubillaga, Susana San Ildefonso-García, Amaya Fernández-Celis, Paula Castillo, Adela Navarro, Virginia Álvarez, Rafael Sádaba, Eva Jover, Ernesto Martín-Núñez, Natalia López-Andrés\",\"doi\":\"10.1152/ajpheart.00763.2024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM. We performed discovery studies using Olink Proteomics® technology in 87 AS patient-derived aortic valves (AVs) (N=28 and N=19 non-diabetic and diabetic men; N=32 and N=8 non-diabetic and diabetic women, respectively) and human cytokine array (N=24 AVs/sex/condition). Both approaches revealed chemerin as a target differentially upregulated in AVs from male diabetic patients, further validated in a cohort of stenotic AVs (N=283, 27.6% DM, 59.4% men). Valvular chemerin levels directly correlated with VIC activation, MR, inflammation, angiogenesis and calcification markers exclusively in diabetic men. <i>In vitro</i>, Aldo (10<sup>-8</sup>M) treatment exclusively increased chemerin levels in valve interstitial cells (VICs) from male DM patients. Aldo also upregulated inflammatory, angiogenic and osteogenic markers in DM and non-DM donors' VICs, which were prevented by MR antagonism. Increased glucose levels in cell media upregulated chemerin in VICs from male diabetic patients. Overall, <i>RARRES2</i>-knockdown in male diabetic VICs resulted in downregulation of inflammatory, angiogenic and osteogenic markers and blocked Aldo-induced responses in high glucose conditions. These data suggest the Aldo/MR pathway selectively increases chemerin in VICs from diabetic men, promoting inflammation, angiogenesis and calcification associated to AS progression.</p>\",\"PeriodicalId\":7692,\"journal\":{\"name\":\"American journal of physiology. Heart and circulatory physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Heart and circulatory physiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpheart.00763.2024\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Heart and circulatory physiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1152/ajpheart.00763.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
摘要
糖尿病(DM)增加主动脉瓣狭窄(AS)的风险,并以性别特异性的方式恶化其病理生理。醛固酮/矿糖皮质激素受体(Aldo/MR)通路参与早期AS和其他糖尿病相关心血管并发症。我们的目标是在AS合并DM中发现新的性别特异性Aldo/MR靶点。我们使用Olink蛋白组学®技术在87例AS患者源性主动脉瓣(AVs)中进行了发现研究(N=28和N=19);N=32和N=8,分别为非糖尿病和糖尿病女性)和人类细胞因子阵列(N=24 av /性别/条件)。两种方法均显示,在男性糖尿病患者的AVs中,趋化素是一个差异上调的靶标,这在一组狭窄型AVs (N=283, 27.6% DM, 59.4%男性)中得到进一步验证。仅在糖尿病男性中,瓣膜趋化素水平与VIC激活、MR、炎症、血管生成和钙化标志物直接相关。在体外,Aldo (10-8M)治疗只增加了男性糖尿病患者瓣膜间质细胞(VICs)的趋化素水平。Aldo还上调了糖尿病和非糖尿病供体vic中的炎症、血管生成和成骨标志物,这些标志物可通过MR拮抗剂预防。细胞培养基中葡萄糖水平升高可上调男性糖尿病患者vic中的趋化素。总体而言,男性糖尿病vic中rarres2敲低导致炎症、血管生成和成骨标志物下调,并阻断高糖条件下aldo诱导的反应。这些数据表明,Aldo/MR通路选择性地增加糖尿病男性vic中的趋化素,促进与AS进展相关的炎症、血管生成和钙化。
Chemerin is a new sex-specific target in aortic stenosis concomitant with diabetes regulated by the aldosterone/mineralocorticoid receptor axis.
Diabetes mellitus (DM) increases the risk of aortic stenosis (AS) and worsens its pathophysiology in a sex-specific manner. Aldosterone/mineralocorticoid receptor (Aldo/MR) pathway participates in early stages of AS and in other diabetic-related cardiovascular complications. We aim to identify new sex-specific Aldo/MR targets in AS complicated with DM. We performed discovery studies using Olink Proteomics® technology in 87 AS patient-derived aortic valves (AVs) (N=28 and N=19 non-diabetic and diabetic men; N=32 and N=8 non-diabetic and diabetic women, respectively) and human cytokine array (N=24 AVs/sex/condition). Both approaches revealed chemerin as a target differentially upregulated in AVs from male diabetic patients, further validated in a cohort of stenotic AVs (N=283, 27.6% DM, 59.4% men). Valvular chemerin levels directly correlated with VIC activation, MR, inflammation, angiogenesis and calcification markers exclusively in diabetic men. In vitro, Aldo (10-8M) treatment exclusively increased chemerin levels in valve interstitial cells (VICs) from male DM patients. Aldo also upregulated inflammatory, angiogenic and osteogenic markers in DM and non-DM donors' VICs, which were prevented by MR antagonism. Increased glucose levels in cell media upregulated chemerin in VICs from male diabetic patients. Overall, RARRES2-knockdown in male diabetic VICs resulted in downregulation of inflammatory, angiogenic and osteogenic markers and blocked Aldo-induced responses in high glucose conditions. These data suggest the Aldo/MR pathway selectively increases chemerin in VICs from diabetic men, promoting inflammation, angiogenesis and calcification associated to AS progression.
期刊介绍:
The American Journal of Physiology-Heart and Circulatory Physiology publishes original investigations, reviews and perspectives on the physiology of the heart, vasculature, and lymphatics. These articles include experimental and theoretical studies of cardiovascular function at all levels of organization ranging from the intact and integrative animal and organ function to the cellular, subcellular, and molecular levels. The journal embraces new descriptions of these functions and their control systems, as well as their basis in biochemistry, biophysics, genetics, and cell biology. Preference is given to research that provides significant new mechanistic physiological insights that determine the performance of the normal and abnormal heart and circulation.