PANoptosis在肾脏疾病中的新作用:分子机制和治疗机会。

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Apoptosis Pub Date : 2025-01-20 DOI:10.1007/s10495-024-02072-y
Yi Hou, Qi Feng, Cien Wei, Fengyu Cao, Dongwei Liu, Shaokang Pan, Yan Shi, Zhangsuo Liu, Fengxun Liu
{"title":"PANoptosis在肾脏疾病中的新作用:分子机制和治疗机会。","authors":"Yi Hou, Qi Feng, Cien Wei, Fengyu Cao, Dongwei Liu, Shaokang Pan, Yan Shi, Zhangsuo Liu, Fengxun Liu","doi":"10.1007/s10495-024-02072-y","DOIUrl":null,"url":null,"abstract":"<p><p>Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.</p>","PeriodicalId":8062,"journal":{"name":"Apoptosis","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities.\",\"authors\":\"Yi Hou, Qi Feng, Cien Wei, Fengyu Cao, Dongwei Liu, Shaokang Pan, Yan Shi, Zhangsuo Liu, Fengxun Liu\",\"doi\":\"10.1007/s10495-024-02072-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.</p>\",\"PeriodicalId\":8062,\"journal\":{\"name\":\"Apoptosis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Apoptosis\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10495-024-02072-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Apoptosis","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10495-024-02072-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肾脏疾病是一项重大的全球公共卫生挑战,其特点是发病机制复杂、发病率高、认知度低、早期筛查不足和治疗差距大。有效的治疗方案仍然缺乏。程序性细胞死亡(PCD)包括细胞凋亡、焦亡和坏死亡,在多种肾脏疾病的发病机制中起着关键作用。2019年,一种新的炎症细胞死亡形式PANoptosis被引入,为先天免疫和PCD研究提供了新的见解。尽管肾脏疾病中PANoptosis的研究仍然有限,但识别panoptosome中的关键分子并了解其调节作用对于疾病的预防和管理至关重要。本文综述了与肾脏疾病相关的各种形式的PCD,以及由Z-DNA结合蛋白1 (ZBP1)激活的泛光小体,在黑色素瘤2 (AIM2)中缺失,受体相互作用蛋白激酶1 (RIPK1), nod样受体家族CARD结构域包含12 (NLRP12)和nod样受体家族成员C5 (NLRC5)。综述了PANoptosis在肾脏疾病领域的研究进展,特别是在肾肿瘤和急性肾损伤(AKI)中的研究进展。目的是为未来研究PANoptosis在肾脏疾病中的作用奠定基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities.

Kidney diseases represent a significant global public health challenge, characterized by complex pathogenesis, high incidence, low awareness, insufficient early screening, and substantial treatment disparities. Effective therapeutic options remain lacking. Programmed cell death (PCD), including apoptosis, pyroptosis, and necroptosis, play pivotal roles in the pathogenesis of various kidney diseases. In 2019, PANoptosis, a novel form of inflammatory cell death, was introduced, providing new insights into innate immunity and PCD research. Although research on PANoptosis in kidney diseases is still limited, identifying key molecules within PANoptosomes and understanding their regulatory roles is critical for disease prevention and management. This review summarizes the various forms of PCD implicated in kidney diseases, along with PANoptosomes activated by Z-DNA binding protein 1 (ZBP1), absent in melanoma 2 (AIM2), receptor-interacting protein kinase 1 (RIPK1), NOD-like receptor family CARD domain containing 12 (NLRP12), and NOD-like receptor family member C5 (NLRC5). It also reviews the advancements in PANoptosis research in the field of kidney diseases, particularly in renal tumors and acute kidney injuries (AKI). The goal is to establish a foundation for future research into the role of PANoptosis in kidney diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Apoptosis
Apoptosis 生物-生化与分子生物学
CiteScore
9.10
自引率
4.20%
发文量
85
审稿时长
1 months
期刊介绍: Apoptosis, a monthly international peer-reviewed journal, focuses on the rapid publication of innovative investigations into programmed cell death. The journal aims to stimulate research on the mechanisms and role of apoptosis in various human diseases, such as cancer, autoimmune disease, viral infection, AIDS, cardiovascular disease, neurodegenerative disorders, osteoporosis, and aging. The Editor-In-Chief acknowledges the importance of advancing clinical therapies for apoptosis-related diseases. Apoptosis considers Original Articles, Reviews, Short Communications, Letters to the Editor, and Book Reviews for publication.
期刊最新文献
Combined effects of natural products and exercise on apoptosis pathways in obesity-related skeletal muscle dysfunction. Emerging role of PANoptosis in kidney diseases: molecular mechanisms and therapeutic opportunities. Exosomes derived from FN14-overexpressing BMSCs activate the NF-κB signaling pathway to induce PANoptosis in osteosarcoma. Mechanisms of apoptosis-related non-coding RNAs in ovarian cancer: a narrative review. Programmed cardiomyocyte death in myocardial infarction.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1