{"title":"亲本因子如何塑造植物胚胎。","authors":"Alexa-Maria Wangler, Martin Bayer","doi":"10.1042/BST20240369","DOIUrl":null,"url":null,"abstract":"<p><p>Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development. Parent-of-origin effects are phenotypic effects that depend on whether a causal gene is inherited from the mother or the father. They are discussed in the context of the parental conflict theory in relation to nutrient allocation to the offspring. Imprinting is an important mechanism leading to uniparental gene expression in the endosperm and maternal control of its development. The parental conflict theory would predict that, with limited resources available, there is a competition between paternal alleles to increase nutrient supply, allowing rapid development and seed filling. A parental conflict might therefore shape the evolution of genes that can influence the allocation of nutrients to the seeds. However, we will also discuss other possible causes that might select genes for uniparental contribution. New data show that parent-of-origin effects also occur during the early stages of embryo development. These appear to be caused primarily by the carry-over of gamete-derived factors. In this review, we will highlight the molecular pathways that control apical-basal patterning in the early embryo and discuss recent findings in the context of the parental conflict theory and alternative explanations.</p>","PeriodicalId":8841,"journal":{"name":"Biochemical Society transactions","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"How parental factors shape the plant embryo.\",\"authors\":\"Alexa-Maria Wangler, Martin Bayer\",\"doi\":\"10.1042/BST20240369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development. Parent-of-origin effects are phenotypic effects that depend on whether a causal gene is inherited from the mother or the father. They are discussed in the context of the parental conflict theory in relation to nutrient allocation to the offspring. Imprinting is an important mechanism leading to uniparental gene expression in the endosperm and maternal control of its development. The parental conflict theory would predict that, with limited resources available, there is a competition between paternal alleles to increase nutrient supply, allowing rapid development and seed filling. A parental conflict might therefore shape the evolution of genes that can influence the allocation of nutrients to the seeds. However, we will also discuss other possible causes that might select genes for uniparental contribution. New data show that parent-of-origin effects also occur during the early stages of embryo development. These appear to be caused primarily by the carry-over of gamete-derived factors. In this review, we will highlight the molecular pathways that control apical-basal patterning in the early embryo and discuss recent findings in the context of the parental conflict theory and alternative explanations.</p>\",\"PeriodicalId\":8841,\"journal\":{\"name\":\"Biochemical Society transactions\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Society transactions\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1042/BST20240369\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Society transactions","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1042/BST20240369","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Primary axis formation is the first step of embryonic patterning in flowering plants and recent findings highlight the importance of parent-of-origin effects in this process. Apical-basal patterning has a strong influence on suspensor development, an extra-embryonic organ involved in nutrient transport to the embryo at an early stage of seed development. The endosperm, a second fertilization product, nourishes the embryo at later stages of seed development. Parent-of-origin effects are phenotypic effects that depend on whether a causal gene is inherited from the mother or the father. They are discussed in the context of the parental conflict theory in relation to nutrient allocation to the offspring. Imprinting is an important mechanism leading to uniparental gene expression in the endosperm and maternal control of its development. The parental conflict theory would predict that, with limited resources available, there is a competition between paternal alleles to increase nutrient supply, allowing rapid development and seed filling. A parental conflict might therefore shape the evolution of genes that can influence the allocation of nutrients to the seeds. However, we will also discuss other possible causes that might select genes for uniparental contribution. New data show that parent-of-origin effects also occur during the early stages of embryo development. These appear to be caused primarily by the carry-over of gamete-derived factors. In this review, we will highlight the molecular pathways that control apical-basal patterning in the early embryo and discuss recent findings in the context of the parental conflict theory and alternative explanations.
期刊介绍:
Biochemical Society Transactions is the reviews journal of the Biochemical Society. Publishing concise reviews written by experts in the field, providing a timely snapshot of the latest developments across all areas of the molecular and cellular biosciences.
Elevating our authors’ ideas and expertise, each review includes a perspectives section where authors offer comment on the latest advances, a glimpse of future challenges and highlighting the importance of associated research areas in far broader contexts.