高级证据合成的统计软件开发案例研究:分析人员和研究软件工程师的综合价值。

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-01-17 DOI:10.1186/s12874-024-02450-9
Naomi Bradbury, Tom Morris, Clareece Nevill, Janion Nevill, Ryan Field, Suzanne Freeman, Nicola Cooper, Alex Sutton
{"title":"高级证据合成的统计软件开发案例研究:分析人员和研究软件工程师的综合价值。","authors":"Naomi Bradbury, Tom Morris, Clareece Nevill, Janion Nevill, Ryan Field, Suzanne Freeman, Nicola Cooper, Alex Sutton","doi":"10.1186/s12874-024-02450-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Since 2015, the Complex Reviews Synthesis Unit (CRSU) has developed a suite of web-based applications (apps) that conduct complex evidence synthesis meta-analyses through point-and-click interfaces. This has been achieved in the R programming language by combining existing R packages that conduct meta-analysis with the shiny web-application package. The CRSU apps have evolved from two short-term student projects into a suite of eight apps that are used for more than 3,000 h per month.</p><p><strong>Aim: </strong>Here, we present our experience of developing production grade web-apps from the point-of-view of individuals trained primarily as statisticians rather than software developers in the hopes of encouraging and inspiring other groups to develop valuable open-source statistical software whilst also learning from our experiences.</p><p><strong>Key challenges: </strong>We discuss how we have addressed challenges to research software development such as responding to feedback from our real-world users to improve the CRSU apps, the implementation of software engineering principles into our app development process and gaining recognition for non-traditional research work within the academic environment.</p><p><strong>Future developments: </strong>The CRSU continues to seek funding opportunities both to maintain and further develop our shiny apps. We aim to increase our user base by implementing new features within the apps and building links with other groups developing complementary evidence synthesis tools.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"13"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740572/pdf/","citationCount":"0","resultStr":"{\"title\":\"A case study in statistical software development for advanced evidence synthesis: the combined value of analysts and research software engineers.\",\"authors\":\"Naomi Bradbury, Tom Morris, Clareece Nevill, Janion Nevill, Ryan Field, Suzanne Freeman, Nicola Cooper, Alex Sutton\",\"doi\":\"10.1186/s12874-024-02450-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Since 2015, the Complex Reviews Synthesis Unit (CRSU) has developed a suite of web-based applications (apps) that conduct complex evidence synthesis meta-analyses through point-and-click interfaces. This has been achieved in the R programming language by combining existing R packages that conduct meta-analysis with the shiny web-application package. The CRSU apps have evolved from two short-term student projects into a suite of eight apps that are used for more than 3,000 h per month.</p><p><strong>Aim: </strong>Here, we present our experience of developing production grade web-apps from the point-of-view of individuals trained primarily as statisticians rather than software developers in the hopes of encouraging and inspiring other groups to develop valuable open-source statistical software whilst also learning from our experiences.</p><p><strong>Key challenges: </strong>We discuss how we have addressed challenges to research software development such as responding to feedback from our real-world users to improve the CRSU apps, the implementation of software engineering principles into our app development process and gaining recognition for non-traditional research work within the academic environment.</p><p><strong>Future developments: </strong>The CRSU continues to seek funding opportunities both to maintain and further develop our shiny apps. We aim to increase our user base by implementing new features within the apps and building links with other groups developing complementary evidence synthesis tools.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"25 1\",\"pages\":\"13\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740572/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02450-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02450-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

背景:自2015年以来,复杂评论综合单元(CRSU)开发了一套基于网络的应用程序(app),通过点击界面进行复杂证据综合元分析。这是在R编程语言中实现的,通过将现有的R包与闪亮的web应用程序包结合起来进行元分析。CRSU的应用程序已经从两个短期的学生项目发展成为一个包含八个应用程序的套件,每个月的使用时间超过3000小时。目的:在这里,我们从主要作为统计学家而不是软件开发人员的个人角度来介绍我们开发生产级web应用程序的经验,希望鼓励和激励其他团体开发有价值的开源统计软件,同时也从我们的经验中学习。主要挑战:我们讨论了我们如何应对研究软件开发的挑战,例如响应现实世界用户的反馈以改进CRSU应用程序,将软件工程原则实施到我们的应用程序开发过程中,以及在学术环境中获得非传统研究工作的认可。未来发展:CRSU将继续寻求融资机会,以维护和进一步开发我们闪亮的应用程序。我们的目标是通过在应用程序中实现新功能并与其他开发补充证据合成工具的小组建立联系来增加我们的用户基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A case study in statistical software development for advanced evidence synthesis: the combined value of analysts and research software engineers.

Background: Since 2015, the Complex Reviews Synthesis Unit (CRSU) has developed a suite of web-based applications (apps) that conduct complex evidence synthesis meta-analyses through point-and-click interfaces. This has been achieved in the R programming language by combining existing R packages that conduct meta-analysis with the shiny web-application package. The CRSU apps have evolved from two short-term student projects into a suite of eight apps that are used for more than 3,000 h per month.

Aim: Here, we present our experience of developing production grade web-apps from the point-of-view of individuals trained primarily as statisticians rather than software developers in the hopes of encouraging and inspiring other groups to develop valuable open-source statistical software whilst also learning from our experiences.

Key challenges: We discuss how we have addressed challenges to research software development such as responding to feedback from our real-world users to improve the CRSU apps, the implementation of software engineering principles into our app development process and gaining recognition for non-traditional research work within the academic environment.

Future developments: The CRSU continues to seek funding opportunities both to maintain and further develop our shiny apps. We aim to increase our user base by implementing new features within the apps and building links with other groups developing complementary evidence synthesis tools.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1