用于从非结构化和半结构化电子健康记录中提取数据的大型语言模型:多模型性能评估。

IF 4.1 Q1 HEALTH CARE SCIENCES & SERVICES BMJ Health & Care Informatics Pub Date : 2025-01-19 DOI:10.1136/bmjhci-2024-101139
Vasileios Ntinopoulos, Hector Rodriguez Cetina Biefer, Igor Tudorache, Nestoras Papadopoulos, Dragan Odavic, Petar Risteski, Achim Haeussler, Omer Dzemali
{"title":"用于从非结构化和半结构化电子健康记录中提取数据的大型语言模型:多模型性能评估。","authors":"Vasileios Ntinopoulos, Hector Rodriguez Cetina Biefer, Igor Tudorache, Nestoras Papadopoulos, Dragan Odavic, Petar Risteski, Achim Haeussler, Omer Dzemali","doi":"10.1136/bmjhci-2024-101139","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>We aimed to evaluate the performance of multiple large language models (LLMs) in data extraction from unstructured and semi-structured electronic health records.</p><p><strong>Methods: </strong>50 synthetic medical notes in English, containing a structured and an unstructured part, were drafted and evaluated by domain experts, and subsequently used for LLM-prompting. 18 LLMs were evaluated against a baseline transformer-based model. Performance assessment comprised four entity extraction and five binary classification tasks with a total of 450 predictions for each LLM. LLM-response consistency assessment was performed over three same-prompt iterations.</p><p><strong>Results: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b exhibited an excellent overall accuracy >0.98 (0.995, 0.988, 0.988, 0.988, 0.986, 0.982, 0.982, and 0.982, respectively), significantly higher than the baseline RoBERTa model (0.742). Claude 2.0, Claude 2.1, Claude 3.0 Opus, PaLM 2 chat-bison, GPT 4, Claude 3.0 Sonnet and Llama 3-70b showed a marginally higher and Gemini Advanced a marginally lower multiple-run consistency than the baseline model RoBERTa (Krippendorff's alpha value 1, 0.998, 0.996, 0.996, 0.992, 0.991, 0.989, 0.988, and 0.985, respectively).</p><p><strong>Discussion: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat bison and Llama 3-70b performed the best, exhibiting outstanding performance in both entity extraction and binary classification, with highly consistent responses over multiple same-prompt iterations. Their use could leverage data for research and unburden healthcare professionals. Real-data analyses are warranted to confirm their performance in a real-world setting.</p><p><strong>Conclusion: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b seem to be able to reliably extract data from unstructured and semi-structured electronic health records. Further analyses using real data are warranted to confirm their performance in a real-world setting.</p>","PeriodicalId":9050,"journal":{"name":"BMJ Health & Care Informatics","volume":"32 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Large language models for data extraction from unstructured and semi-structured electronic health records: a multiple model performance evaluation.\",\"authors\":\"Vasileios Ntinopoulos, Hector Rodriguez Cetina Biefer, Igor Tudorache, Nestoras Papadopoulos, Dragan Odavic, Petar Risteski, Achim Haeussler, Omer Dzemali\",\"doi\":\"10.1136/bmjhci-2024-101139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>We aimed to evaluate the performance of multiple large language models (LLMs) in data extraction from unstructured and semi-structured electronic health records.</p><p><strong>Methods: </strong>50 synthetic medical notes in English, containing a structured and an unstructured part, were drafted and evaluated by domain experts, and subsequently used for LLM-prompting. 18 LLMs were evaluated against a baseline transformer-based model. Performance assessment comprised four entity extraction and five binary classification tasks with a total of 450 predictions for each LLM. LLM-response consistency assessment was performed over three same-prompt iterations.</p><p><strong>Results: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b exhibited an excellent overall accuracy >0.98 (0.995, 0.988, 0.988, 0.988, 0.986, 0.982, 0.982, and 0.982, respectively), significantly higher than the baseline RoBERTa model (0.742). Claude 2.0, Claude 2.1, Claude 3.0 Opus, PaLM 2 chat-bison, GPT 4, Claude 3.0 Sonnet and Llama 3-70b showed a marginally higher and Gemini Advanced a marginally lower multiple-run consistency than the baseline model RoBERTa (Krippendorff's alpha value 1, 0.998, 0.996, 0.996, 0.992, 0.991, 0.989, 0.988, and 0.985, respectively).</p><p><strong>Discussion: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat bison and Llama 3-70b performed the best, exhibiting outstanding performance in both entity extraction and binary classification, with highly consistent responses over multiple same-prompt iterations. Their use could leverage data for research and unburden healthcare professionals. Real-data analyses are warranted to confirm their performance in a real-world setting.</p><p><strong>Conclusion: </strong>Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b seem to be able to reliably extract data from unstructured and semi-structured electronic health records. Further analyses using real data are warranted to confirm their performance in a real-world setting.</p>\",\"PeriodicalId\":9050,\"journal\":{\"name\":\"BMJ Health & Care Informatics\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMJ Health & Care Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1136/bmjhci-2024-101139\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMJ Health & Care Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1136/bmjhci-2024-101139","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:我们旨在评估多个大语言模型(llm)在从非结构化和半结构化电子健康记录中提取数据方面的性能。方法:由领域专家起草并评估50份英文合成医学笔记,其中包含结构化和非结构化部分,随后用于llm提示。根据基于变压器的基线模型对18个llm进行了评估。性能评估包括四个实体提取和五个二元分类任务,每个LLM总共有450个预测。在三个相同提示的迭代中执行llm响应一致性评估。结果:Claude 3.0 Opus、Claude 3.0 Sonnet、Claude 2.0、GPT 4、Claude 2.1、Gemini Advanced、PaLM 2 chat-bison和Llama 3-70b的总体准确率为0.98(分别为0.995、0.988、0.988、0.988、0.986、0.982、0.982和0.982),显著高于基线RoBERTa模型(0.742)。与基线模型RoBERTa相比,Claude 2.0、Claude 2.1、Claude 3.0 Opus、PaLM 2 chat-bison、GPT 4、Claude 3.0 Sonnet和Llama 3-70b的多次运行一致性略高,而Gemini Advanced的多次运行一致性略低(Krippendorff α值分别为0.998、0.996、0.996、0.992、0.991、0.989、0.988和0.985)。讨论:Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat bison和Llama 3-70b表现最好,在实体提取和二元分类方面都表现出色,多次相同提示迭代的响应高度一致。它们的使用可以利用数据进行研究,减轻医疗保健专业人员的负担。需要进行实时数据分析,以确认其在实际环境中的性能。结论:Claude 3.0 Opus、Claude 3.0 Sonnet、Claude 2.0、GPT 4、Claude 2.1、Gemini Advanced、PaLM 2 chat-bison和Llama 3-70b似乎能够可靠地从非结构化和半结构化的电子健康记录中提取数据。有必要使用实际数据进行进一步分析,以确认它们在实际环境中的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large language models for data extraction from unstructured and semi-structured electronic health records: a multiple model performance evaluation.

Objectives: We aimed to evaluate the performance of multiple large language models (LLMs) in data extraction from unstructured and semi-structured electronic health records.

Methods: 50 synthetic medical notes in English, containing a structured and an unstructured part, were drafted and evaluated by domain experts, and subsequently used for LLM-prompting. 18 LLMs were evaluated against a baseline transformer-based model. Performance assessment comprised four entity extraction and five binary classification tasks with a total of 450 predictions for each LLM. LLM-response consistency assessment was performed over three same-prompt iterations.

Results: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b exhibited an excellent overall accuracy >0.98 (0.995, 0.988, 0.988, 0.988, 0.986, 0.982, 0.982, and 0.982, respectively), significantly higher than the baseline RoBERTa model (0.742). Claude 2.0, Claude 2.1, Claude 3.0 Opus, PaLM 2 chat-bison, GPT 4, Claude 3.0 Sonnet and Llama 3-70b showed a marginally higher and Gemini Advanced a marginally lower multiple-run consistency than the baseline model RoBERTa (Krippendorff's alpha value 1, 0.998, 0.996, 0.996, 0.992, 0.991, 0.989, 0.988, and 0.985, respectively).

Discussion: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat bison and Llama 3-70b performed the best, exhibiting outstanding performance in both entity extraction and binary classification, with highly consistent responses over multiple same-prompt iterations. Their use could leverage data for research and unburden healthcare professionals. Real-data analyses are warranted to confirm their performance in a real-world setting.

Conclusion: Claude 3.0 Opus, Claude 3.0 Sonnet, Claude 2.0, GPT 4, Claude 2.1, Gemini Advanced, PaLM 2 chat-bison and Llama 3-70b seem to be able to reliably extract data from unstructured and semi-structured electronic health records. Further analyses using real data are warranted to confirm their performance in a real-world setting.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.10
自引率
4.90%
发文量
40
审稿时长
18 weeks
期刊最新文献
Evaluating the implementation of a digital coordination centre in an Australian hospital setting: a mixed method study protocol. Biodesign in the generative AI era: enhancing innovation and equity with NLP and LLM tools. Evaluation of a pragmatic approach to predicting COVID-19-positive hospital bed occupancy. Engaging with patients with diabetes: the role of social media in low-income healthcare organisations. ConciliaMed: an interactive mobile and web tool to reconcile chronic medications of patients undergoing elective surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1