中医系统评价的有效证据选择。

IF 3.9 3区 医学 Q1 HEALTH CARE SCIENCES & SERVICES BMC Medical Research Methodology Pub Date : 2025-01-15 DOI:10.1186/s12874-024-02430-z
Yizhen Li, Zhe Huang, Zhongzhi Luan, Shujing Xu, Yunan Zhang, Lin Wu, Darong Wu, Dongran Han, Yixing Liu
{"title":"中医系统评价的有效证据选择。","authors":"Yizhen Li, Zhe Huang, Zhongzhi Luan, Shujing Xu, Yunan Zhang, Lin Wu, Darong Wu, Dongran Han, Yixing Liu","doi":"10.1186/s12874-024-02430-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.</p><p><strong>Methods: </strong>We integrated an established deep learning model (Evi-BERT combined rule-based method) with Boolean logic algorithms and an expanded retrieval strategy to automatically and accurately select potential evidence with minimal human intervention. The selection process is recorded in real-time, allowing researchers to backtrack and verify its accuracy. This innovative approach was tested on ten high-quality, randomly selected systematic reviews of TCM-related topics written in Chinese. To evaluate its effectiveness, we compared the screening time and accuracy of this approach with traditional evidence selection methods.</p><p><strong>Results: </strong>Our finding demonstrated that the new method accurately selected potential literature based on consistent criteria while significantly reducing the time required for the process. Additionally, in some cases, this approach identified a broader range of relevant evidence and enabled the tracking of selection progress for future reference. The study also revealed that traditional screening methods are often subjective and prone to errors, frequently resulting in the inclusion of literature that does not meet established standards. In contrast, our method offers a more accurate and efficient way to select clinical evidence for TCM practitioners, outperforming traditional manual approaches.</p><p><strong>Conclusion: </strong>We proposed an innovative approach for selecting clinical evidence for TCM reviews and guidelines, aiming to reduce the workload for researchers. While this method showed promise in improving the efficiency and accuracy of evidence-based selection, its full potential required further validation. Additionally, it may serve as a useful tool for editors to assess manuscript quality in the future.</p>","PeriodicalId":9114,"journal":{"name":"BMC Medical Research Methodology","volume":"25 1","pages":"10"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734327/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient evidence selection for systematic reviews in traditional Chinese medicine.\",\"authors\":\"Yizhen Li, Zhe Huang, Zhongzhi Luan, Shujing Xu, Yunan Zhang, Lin Wu, Darong Wu, Dongran Han, Yixing Liu\",\"doi\":\"10.1186/s12874-024-02430-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.</p><p><strong>Methods: </strong>We integrated an established deep learning model (Evi-BERT combined rule-based method) with Boolean logic algorithms and an expanded retrieval strategy to automatically and accurately select potential evidence with minimal human intervention. The selection process is recorded in real-time, allowing researchers to backtrack and verify its accuracy. This innovative approach was tested on ten high-quality, randomly selected systematic reviews of TCM-related topics written in Chinese. To evaluate its effectiveness, we compared the screening time and accuracy of this approach with traditional evidence selection methods.</p><p><strong>Results: </strong>Our finding demonstrated that the new method accurately selected potential literature based on consistent criteria while significantly reducing the time required for the process. Additionally, in some cases, this approach identified a broader range of relevant evidence and enabled the tracking of selection progress for future reference. The study also revealed that traditional screening methods are often subjective and prone to errors, frequently resulting in the inclusion of literature that does not meet established standards. In contrast, our method offers a more accurate and efficient way to select clinical evidence for TCM practitioners, outperforming traditional manual approaches.</p><p><strong>Conclusion: </strong>We proposed an innovative approach for selecting clinical evidence for TCM reviews and guidelines, aiming to reduce the workload for researchers. While this method showed promise in improving the efficiency and accuracy of evidence-based selection, its full potential required further validation. Additionally, it may serve as a useful tool for editors to assess manuscript quality in the future.</p>\",\"PeriodicalId\":9114,\"journal\":{\"name\":\"BMC Medical Research Methodology\",\"volume\":\"25 1\",\"pages\":\"10\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734327/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Research Methodology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12874-024-02430-z\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Research Methodology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12874-024-02430-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

目的:系统评价(SRs)或临床指南的临床证据的检索和选择是中医研究人员必不可少的过程。然而,这个过程通常是耗时和资源密集的。在本研究中,我们引入了一种新的精确优先的综合信息提取和选择程序,以提高中医医生证据选择的效率和准确性。方法:我们将建立的深度学习模型(Evi-BERT结合基于规则的方法)与布尔逻辑算法和扩展的检索策略相结合,在最小的人为干预下自动准确地选择潜在证据。选择过程是实时记录的,允许研究人员回溯并验证其准确性。这个创新的方法在十篇用中文写的高质量的、随机选择的中医相关主题的系统综述中进行了测试。为了评估其有效性,我们比较了该方法与传统证据选择方法的筛选时间和准确性。结果:新方法能够根据一致的标准准确地选择潜在文献,同时显著缩短了过程所需的时间。此外,在某些情况下,这种方法确定了更广泛的相关证据,并能够跟踪选择过程,以供将来参考。该研究还表明,传统的筛选方法往往是主观的,容易出错,经常导致纳入不符合既定标准的文献。相比之下,我们的方法为中医医生提供了一种更准确、更有效的临床证据选择方法,优于传统的手工方法。结论:我们提出了一种创新的方法来选择中医评论和指南的临床证据,旨在减少研究人员的工作量。虽然该方法有望提高循证选择的效率和准确性,但其全部潜力需要进一步验证。此外,它可以作为一个有用的工具,为编辑评估手稿的质量在未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient evidence selection for systematic reviews in traditional Chinese medicine.

Purpose: The process of searching for and selecting clinical evidence for systematic reviews (SRs) or clinical guidelines is essential for researchers in Traditional Chinese medicine (TCM). However, this process is often time-consuming and resource-intensive. In this study, we introduce a novel precision-preferred comprehensive information extraction and selection procedure to enhance both the efficiency and accuracy of evidence selection for TCM practitioners.

Methods: We integrated an established deep learning model (Evi-BERT combined rule-based method) with Boolean logic algorithms and an expanded retrieval strategy to automatically and accurately select potential evidence with minimal human intervention. The selection process is recorded in real-time, allowing researchers to backtrack and verify its accuracy. This innovative approach was tested on ten high-quality, randomly selected systematic reviews of TCM-related topics written in Chinese. To evaluate its effectiveness, we compared the screening time and accuracy of this approach with traditional evidence selection methods.

Results: Our finding demonstrated that the new method accurately selected potential literature based on consistent criteria while significantly reducing the time required for the process. Additionally, in some cases, this approach identified a broader range of relevant evidence and enabled the tracking of selection progress for future reference. The study also revealed that traditional screening methods are often subjective and prone to errors, frequently resulting in the inclusion of literature that does not meet established standards. In contrast, our method offers a more accurate and efficient way to select clinical evidence for TCM practitioners, outperforming traditional manual approaches.

Conclusion: We proposed an innovative approach for selecting clinical evidence for TCM reviews and guidelines, aiming to reduce the workload for researchers. While this method showed promise in improving the efficiency and accuracy of evidence-based selection, its full potential required further validation. Additionally, it may serve as a useful tool for editors to assess manuscript quality in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Medical Research Methodology
BMC Medical Research Methodology 医学-卫生保健
CiteScore
6.50
自引率
2.50%
发文量
298
审稿时长
3-8 weeks
期刊介绍: BMC Medical Research Methodology is an open access journal publishing original peer-reviewed research articles in methodological approaches to healthcare research. Articles on the methodology of epidemiological research, clinical trials and meta-analysis/systematic review are particularly encouraged, as are empirical studies of the associations between choice of methodology and study outcomes. BMC Medical Research Methodology does not aim to publish articles describing scientific methods or techniques: these should be directed to the BMC journal covering the relevant biomedical subject area.
期刊最新文献
A generative model for evaluating missing data methods in large epidemiological cohorts. Discrepancies in safety reporting for chronic back pain clinical trials: an observational study from ClinicalTrials.gov and publications. Multiple states clustering analysis (MSCA), an unsupervised approach to multiple time-to-event electronic health records applied to multimorbidity associated with myocardial infarction. Matching plus regression adjustment for the estimation of the average treatment effect on survival outcomes: a case study with mosunetuzumab in relapsed/refractory follicular lymphoma. Protocol publication rate and comparison between article, registry and protocol in RCTs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1