基于机器学习的胎儿超声心动图分析综述。

IF 7 2区 医学 Q1 BIOLOGY Computers in biology and medicine Pub Date : 2025-03-01 Epub Date: 2025-01-15 DOI:10.1016/j.compbiomed.2025.109666
Netzahualcoyotl Hernandez-Cruz, Olga Patey, Clare Teng, Aris T Papageorghiou, J Alison Noble
{"title":"基于机器学习的胎儿超声心动图分析综述。","authors":"Netzahualcoyotl Hernandez-Cruz, Olga Patey, Clare Teng, Aris T Papageorghiou, J Alison Noble","doi":"10.1016/j.compbiomed.2025.109666","DOIUrl":null,"url":null,"abstract":"<p><p>Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023. In total, 343 papers were found, where 48 papers were selected to compose the detailed review. The reviewed literature presents research on neural network-based methods to identify fetal heart anatomy in classification and segmentation modelling. The reviewed literature uses five categorical technical analysis terms: attention and saliency, coarse to fine, dilated convolution, generative adversarial networks, and spatio-temporal. This review offers a technical overview for those already working in the field and an introduction to those new to the topic.</p>","PeriodicalId":10578,"journal":{"name":"Computers in biology and medicine","volume":"186 ","pages":"109666"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A comprehensive scoping review on machine learning-based fetal echocardiography analysis.\",\"authors\":\"Netzahualcoyotl Hernandez-Cruz, Olga Patey, Clare Teng, Aris T Papageorghiou, J Alison Noble\",\"doi\":\"10.1016/j.compbiomed.2025.109666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023. In total, 343 papers were found, where 48 papers were selected to compose the detailed review. The reviewed literature presents research on neural network-based methods to identify fetal heart anatomy in classification and segmentation modelling. The reviewed literature uses five categorical technical analysis terms: attention and saliency, coarse to fine, dilated convolution, generative adversarial networks, and spatio-temporal. This review offers a technical overview for those already working in the field and an introduction to those new to the topic.</p>\",\"PeriodicalId\":10578,\"journal\":{\"name\":\"Computers in biology and medicine\",\"volume\":\"186 \",\"pages\":\"109666\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers in biology and medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.compbiomed.2025.109666\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in biology and medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.compbiomed.2025.109666","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胎儿超声心动图(胎儿心脏超声)在识别心脏缺陷方面起着至关重要的作用,使临床医生能够制定产前和产后管理计划。基于机器学习的方法正在出现,以支持胎儿超声心动图分析的自动化;本文综述了这一领域的文献综述。在领先的索引平台ACM、IEEE Xplore、PubMed、Scopus和Web of Science上查询了搜索结果,包括2023年7月之前发表的论文。共发现343篇论文,其中48篇论文被选择撰写详细综述。综述了基于神经网络的方法在分类和分割建模中识别胎儿心脏解剖的研究。回顾文献使用五种分类技术分析术语:注意和显著性,粗到细,扩展卷积,生成对抗网络和时空。这篇综述为那些已经在该领域工作的人提供了技术概述,并为那些新的主题提供了介绍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A comprehensive scoping review on machine learning-based fetal echocardiography analysis.

Fetal echocardiography (ultrasound of the fetal heart) plays a vital role in identifying heart defects, allowing clinicians to establish prenatal and postnatal management plans. Machine learning-based methods are emerging to support the automation of fetal echocardiographic analysis; this review presents the findings from a literature review in this area. Searches were queried at leading indexing platforms ACM, IEEE Xplore, PubMed, Scopus, and Web of Science, including papers published until July 2023. In total, 343 papers were found, where 48 papers were selected to compose the detailed review. The reviewed literature presents research on neural network-based methods to identify fetal heart anatomy in classification and segmentation modelling. The reviewed literature uses five categorical technical analysis terms: attention and saliency, coarse to fine, dilated convolution, generative adversarial networks, and spatio-temporal. This review offers a technical overview for those already working in the field and an introduction to those new to the topic.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers in biology and medicine
Computers in biology and medicine 工程技术-工程:生物医学
CiteScore
11.70
自引率
10.40%
发文量
1086
审稿时长
74 days
期刊介绍: Computers in Biology and Medicine is an international forum for sharing groundbreaking advancements in the use of computers in bioscience and medicine. This journal serves as a medium for communicating essential research, instruction, ideas, and information regarding the rapidly evolving field of computer applications in these domains. By encouraging the exchange of knowledge, we aim to facilitate progress and innovation in the utilization of computers in biology and medicine.
期刊最新文献
Exploring the potential of direct-acting antivirals against Chikungunya virus through structure-based drug repositioning and molecular dynamic simulations Comprehensive experimental and computational analysis of endemic Allium tuncelianum: Phytochemical profiling, antimicrobial activity, and In silico studies for potential therapeutic applications Automatic cerebral microbleeds detection from MR images via multi-channel and multi-scale CNNs Integrating local and global attention mechanisms for enhanced oral cancer detection and explainability Uncovering the role of TREM-1 in celiac disease: In silico insights into the recognition of gluten-derived peptides and inflammatory mechanisms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1