{"title":"基于信念规则库的上肢康复评估模型研究。","authors":"Dawei Jiang, Zixu Zhao, Lijun Wang, Chao Zhang, Meixuan He, Tiejun Ji","doi":"10.3389/fbioe.2024.1469598","DOIUrl":null,"url":null,"abstract":"<p><p>Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model. This model integrates muscle strength assessment methods and the Belief Rule Base (BRB), along with qualitative knowledge such as clinical rehabilitation theories and expert experiences. It also utilizes training data from actual patients, collected by an upper limb rehabilitation robot. We then optimized the BRB model's evaluation accuracy using the Fmincon algorithm and compared its result with commonly used methods such as the Back Propagation (BP) neural network and Support Vector Machine (SVM). This comparison validated the effectiveness and advancement of our BRB approach. This work has laid both a theoretical and practical groundwork for developing a clinical decision support system based on the BRB for upper limb rehabilitation evaluations.</p>","PeriodicalId":12444,"journal":{"name":"Frontiers in Bioengineering and Biotechnology","volume":"12 ","pages":"1469598"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743729/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research on upper limb rehabilitation assessment model based on belief rule base.\",\"authors\":\"Dawei Jiang, Zixu Zhao, Lijun Wang, Chao Zhang, Meixuan He, Tiejun Ji\",\"doi\":\"10.3389/fbioe.2024.1469598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model. This model integrates muscle strength assessment methods and the Belief Rule Base (BRB), along with qualitative knowledge such as clinical rehabilitation theories and expert experiences. It also utilizes training data from actual patients, collected by an upper limb rehabilitation robot. We then optimized the BRB model's evaluation accuracy using the Fmincon algorithm and compared its result with commonly used methods such as the Back Propagation (BP) neural network and Support Vector Machine (SVM). This comparison validated the effectiveness and advancement of our BRB approach. This work has laid both a theoretical and practical groundwork for developing a clinical decision support system based on the BRB for upper limb rehabilitation evaluations.</p>\",\"PeriodicalId\":12444,\"journal\":{\"name\":\"Frontiers in Bioengineering and Biotechnology\",\"volume\":\"12 \",\"pages\":\"1469598\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Bioengineering and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3389/fbioe.2024.1469598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Bioengineering and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3389/fbioe.2024.1469598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Research on upper limb rehabilitation assessment model based on belief rule base.
Rehabilitation assessments hold an irreplaceable role in the field of rehabilitative therapy. However, due to the subjectivity of traditional physicians and the variability of patient conditions, this leads to a lack of detailed grading and inaccurate assessment results. To address this issue, we developed an upper limb rehabilitation evaluation model. This model integrates muscle strength assessment methods and the Belief Rule Base (BRB), along with qualitative knowledge such as clinical rehabilitation theories and expert experiences. It also utilizes training data from actual patients, collected by an upper limb rehabilitation robot. We then optimized the BRB model's evaluation accuracy using the Fmincon algorithm and compared its result with commonly used methods such as the Back Propagation (BP) neural network and Support Vector Machine (SVM). This comparison validated the effectiveness and advancement of our BRB approach. This work has laid both a theoretical and practical groundwork for developing a clinical decision support system based on the BRB for upper limb rehabilitation evaluations.
期刊介绍:
The translation of new discoveries in medicine to clinical routine has never been easy. During the second half of the last century, thanks to the progress in chemistry, biochemistry and pharmacology, we have seen the development and the application of a large number of drugs and devices aimed at the treatment of symptoms, blocking unwanted pathways and, in the case of infectious diseases, fighting the micro-organisms responsible. However, we are facing, today, a dramatic change in the therapeutic approach to pathologies and diseases. Indeed, the challenge of the present and the next decade is to fully restore the physiological status of the diseased organism and to completely regenerate tissue and organs when they are so seriously affected that treatments cannot be limited to the repression of symptoms or to the repair of damage. This is being made possible thanks to the major developments made in basic cell and molecular biology, including stem cell science, growth factor delivery, gene isolation and transfection, the advances in bioengineering and nanotechnology, including development of new biomaterials, biofabrication technologies and use of bioreactors, and the big improvements in diagnostic tools and imaging of cells, tissues and organs.
In today`s world, an enhancement of communication between multidisciplinary experts, together with the promotion of joint projects and close collaborations among scientists, engineers, industry people, regulatory agencies and physicians are absolute requirements for the success of any attempt to develop and clinically apply a new biological therapy or an innovative device involving the collective use of biomaterials, cells and/or bioactive molecules. “Frontiers in Bioengineering and Biotechnology” aspires to be a forum for all people involved in the process by bridging the gap too often existing between a discovery in the basic sciences and its clinical application.