{"title":"进化年轻内源性逆转录病毒的激活与COVID-19免疫病理有关","authors":"Reia Yoshida, Hitoshi Ohtani","doi":"10.1111/gtc.13194","DOIUrl":null,"url":null,"abstract":"<p>The dysfunction of the innate immune system is well-described as a clinical characteristic of COVID-19. While several groups have reported human endogenous retroviruses (ERVs) as enhancing factors of immune reactivity, characterization of the COVID-19-specific ERVs has not yet been sufficiently conducted. Here, we revealed the transcriptome profile of more than 500 ERV subfamilies and innate immune response genes in eight different cohorts of platelet, peripheral blood mononuclear cells (PBMCs), lung, frontal cortex of brain, ventral midbrain, pooled human umbilical vein endothelial cells (pHUVECs), placenta, and cardiac microvascular endothelial cells (HCMEC) from COVID-19 patients (total; <i>n</i> = 124) and normal samples (total; <i>n</i> = 53) using publicly available datasets. While upregulation of ERV subfamilies was found in platelets, PBMCs, and placenta, the immune reactivity was confined to only platelets and PBMCs. It is noteworthy that the evolutionary ages of the upregulated ERV subfamilies detected in platelets and PBMCs were younger than other ERV subfamilies, but the tendency was not seen in the upregulated ERV subfamilies in placenta. The results suggest that only evolutionarily young ERVs can function as enhancing factors of the immune reactivity in COVID-19 patients. The finding should be instrumental in understanding the COVID-19 immunopathology.</p>","PeriodicalId":12742,"journal":{"name":"Genes to Cells","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744038/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of Evolutionarily Young Endogenous Retroviruses Is Implicated in COVID-19 Immunopathology\",\"authors\":\"Reia Yoshida, Hitoshi Ohtani\",\"doi\":\"10.1111/gtc.13194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The dysfunction of the innate immune system is well-described as a clinical characteristic of COVID-19. While several groups have reported human endogenous retroviruses (ERVs) as enhancing factors of immune reactivity, characterization of the COVID-19-specific ERVs has not yet been sufficiently conducted. Here, we revealed the transcriptome profile of more than 500 ERV subfamilies and innate immune response genes in eight different cohorts of platelet, peripheral blood mononuclear cells (PBMCs), lung, frontal cortex of brain, ventral midbrain, pooled human umbilical vein endothelial cells (pHUVECs), placenta, and cardiac microvascular endothelial cells (HCMEC) from COVID-19 patients (total; <i>n</i> = 124) and normal samples (total; <i>n</i> = 53) using publicly available datasets. While upregulation of ERV subfamilies was found in platelets, PBMCs, and placenta, the immune reactivity was confined to only platelets and PBMCs. It is noteworthy that the evolutionary ages of the upregulated ERV subfamilies detected in platelets and PBMCs were younger than other ERV subfamilies, but the tendency was not seen in the upregulated ERV subfamilies in placenta. The results suggest that only evolutionarily young ERVs can function as enhancing factors of the immune reactivity in COVID-19 patients. The finding should be instrumental in understanding the COVID-19 immunopathology.</p>\",\"PeriodicalId\":12742,\"journal\":{\"name\":\"Genes to Cells\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744038/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes to Cells\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13194\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes to Cells","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gtc.13194","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Activation of Evolutionarily Young Endogenous Retroviruses Is Implicated in COVID-19 Immunopathology
The dysfunction of the innate immune system is well-described as a clinical characteristic of COVID-19. While several groups have reported human endogenous retroviruses (ERVs) as enhancing factors of immune reactivity, characterization of the COVID-19-specific ERVs has not yet been sufficiently conducted. Here, we revealed the transcriptome profile of more than 500 ERV subfamilies and innate immune response genes in eight different cohorts of platelet, peripheral blood mononuclear cells (PBMCs), lung, frontal cortex of brain, ventral midbrain, pooled human umbilical vein endothelial cells (pHUVECs), placenta, and cardiac microvascular endothelial cells (HCMEC) from COVID-19 patients (total; n = 124) and normal samples (total; n = 53) using publicly available datasets. While upregulation of ERV subfamilies was found in platelets, PBMCs, and placenta, the immune reactivity was confined to only platelets and PBMCs. It is noteworthy that the evolutionary ages of the upregulated ERV subfamilies detected in platelets and PBMCs were younger than other ERV subfamilies, but the tendency was not seen in the upregulated ERV subfamilies in placenta. The results suggest that only evolutionarily young ERVs can function as enhancing factors of the immune reactivity in COVID-19 patients. The finding should be instrumental in understanding the COVID-19 immunopathology.
期刊介绍:
Genes to Cells provides an international forum for the publication of papers describing important aspects of molecular and cellular biology. The journal aims to present papers that provide conceptual advance in the relevant field. Particular emphasis will be placed on work aimed at understanding the basic mechanisms underlying biological events.