Vivek Sriram, Jakob Woerner, Yong-Yeol Ahn, Dokyoon Kim
{"title":"性别和基因型在疾病关联中的相互作用:英国生物银行的综合网络分析。","authors":"Vivek Sriram, Jakob Woerner, Yong-Yeol Ahn, Dokyoon Kim","doi":"10.1186/s40246-024-00710-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.</p><p><strong>Results: </strong>Using UK Biobank summary statistics, we built male- and female-specific DDNs for 103 diseases. This revealed that male and female diseasomes have similar topology and central diseases (e.g., hypertensive, chronic respiratory, and thyroid-based disorders), yet some phenotypes exhibit sex-specific influence in cross-phenotype associations. Multiple sclerosis and osteoarthritis are central only in the female DDN, while cardiometabolic diseases and skin cancer are more prominent in the male DDN. Edge comparison indicated similar shared genetics between the two graphs relative to a random model of disease association, though notable discrepancies in embedding distances and clustering patterns imply a more expansive genetic influence on multimorbidity risk for females than males. Analysis of pleiotropic contributions of two sexually-dimorphic single-nucleotide polymorphisms related to thyroid disorders further validated a distinct genetic architecture across sexes that influences associations, confirmed through examination of corresponding gene expression profiles from the GTEx Portal.</p><p><strong>Conclusions: </strong>Our analysis affirms the presence of GxS interactions in cross-phenotype associations, emphasizing the need to investigate the role of sex in disease onset and its importance in biomedical discovery and precision medicine research.</p>","PeriodicalId":13183,"journal":{"name":"Human Genomics","volume":"19 1","pages":"4"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740496/pdf/","citationCount":"0","resultStr":"{\"title\":\"The interplay of sex and genotype in disease associations: a comprehensive network analysis in the UK Biobank.\",\"authors\":\"Vivek Sriram, Jakob Woerner, Yong-Yeol Ahn, Dokyoon Kim\",\"doi\":\"10.1186/s40246-024-00710-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.</p><p><strong>Results: </strong>Using UK Biobank summary statistics, we built male- and female-specific DDNs for 103 diseases. This revealed that male and female diseasomes have similar topology and central diseases (e.g., hypertensive, chronic respiratory, and thyroid-based disorders), yet some phenotypes exhibit sex-specific influence in cross-phenotype associations. Multiple sclerosis and osteoarthritis are central only in the female DDN, while cardiometabolic diseases and skin cancer are more prominent in the male DDN. Edge comparison indicated similar shared genetics between the two graphs relative to a random model of disease association, though notable discrepancies in embedding distances and clustering patterns imply a more expansive genetic influence on multimorbidity risk for females than males. Analysis of pleiotropic contributions of two sexually-dimorphic single-nucleotide polymorphisms related to thyroid disorders further validated a distinct genetic architecture across sexes that influences associations, confirmed through examination of corresponding gene expression profiles from the GTEx Portal.</p><p><strong>Conclusions: </strong>Our analysis affirms the presence of GxS interactions in cross-phenotype associations, emphasizing the need to investigate the role of sex in disease onset and its importance in biomedical discovery and precision medicine research.</p>\",\"PeriodicalId\":13183,\"journal\":{\"name\":\"Human Genomics\",\"volume\":\"19 1\",\"pages\":\"4\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11740496/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Genomics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40246-024-00710-9\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genomics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40246-024-00710-9","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
The interplay of sex and genotype in disease associations: a comprehensive network analysis in the UK Biobank.
Background: Disease comorbidities and longer-term complications, arising from biologically related associations across phenotypes, can lead to increased risk of severe health outcomes. Given that many diseases exhibit sex-specific differences in their genetics, our objective was to determine whether genotype-by-sex (GxS) interactions similarly influence cross-phenotype associations. Through comparison of sex-stratified disease-disease networks (DDNs)-where nodes represent diseases and edges represent their relationships-we investigate sex differences in patterns of polygenicity and pleiotropy between diseases.
Results: Using UK Biobank summary statistics, we built male- and female-specific DDNs for 103 diseases. This revealed that male and female diseasomes have similar topology and central diseases (e.g., hypertensive, chronic respiratory, and thyroid-based disorders), yet some phenotypes exhibit sex-specific influence in cross-phenotype associations. Multiple sclerosis and osteoarthritis are central only in the female DDN, while cardiometabolic diseases and skin cancer are more prominent in the male DDN. Edge comparison indicated similar shared genetics between the two graphs relative to a random model of disease association, though notable discrepancies in embedding distances and clustering patterns imply a more expansive genetic influence on multimorbidity risk for females than males. Analysis of pleiotropic contributions of two sexually-dimorphic single-nucleotide polymorphisms related to thyroid disorders further validated a distinct genetic architecture across sexes that influences associations, confirmed through examination of corresponding gene expression profiles from the GTEx Portal.
Conclusions: Our analysis affirms the presence of GxS interactions in cross-phenotype associations, emphasizing the need to investigate the role of sex in disease onset and its importance in biomedical discovery and precision medicine research.
期刊介绍:
Human Genomics is a peer-reviewed, open access, online journal that focuses on the application of genomic analysis in all aspects of human health and disease, as well as genomic analysis of drug efficacy and safety, and comparative genomics.
Topics covered by the journal include, but are not limited to: pharmacogenomics, genome-wide association studies, genome-wide sequencing, exome sequencing, next-generation deep-sequencing, functional genomics, epigenomics, translational genomics, expression profiling, proteomics, bioinformatics, animal models, statistical genetics, genetic epidemiology, human population genetics and comparative genomics.