甜瓜蚜虫表皮形成和存活需要内胚层结构糖蛋白AgSgAbd-2-like。

IF 2.9 1区 农林科学 Q1 ENTOMOLOGY Insect Science Pub Date : 2025-01-17 DOI:10.1111/1744-7917.13499
Mingyu Guo, Xueting Qu, Shenhang Cheng, Haiqi Wang, Yang Xue, Jie Shen, Dan Wang
{"title":"甜瓜蚜虫表皮形成和存活需要内胚层结构糖蛋白AgSgAbd-2-like。","authors":"Mingyu Guo, Xueting Qu, Shenhang Cheng, Haiqi Wang, Yang Xue, Jie Shen, Dan Wang","doi":"10.1111/1744-7917.13499","DOIUrl":null,"url":null,"abstract":"<p><p>Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.</p>","PeriodicalId":13618,"journal":{"name":"Insect Science","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii.\",\"authors\":\"Mingyu Guo, Xueting Qu, Shenhang Cheng, Haiqi Wang, Yang Xue, Jie Shen, Dan Wang\",\"doi\":\"10.1111/1744-7917.13499\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.</p>\",\"PeriodicalId\":13618,\"journal\":{\"name\":\"Insect Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Insect Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1111/1744-7917.13499\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/1744-7917.13499","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

角质层蛋白对昆虫的角质层形成、蜕皮和生存至关重要。然而,对甜瓜蚜虫表皮蛋白的功能分析有限。在这项研究中,我们在瓜蚜棉蚜(Aphis gossypii)中鉴定了一个囊内结构糖蛋白(ESG) agsgabd -2样,它是CPR(表皮蛋白含有保守的Rebers-Riddiford基序)几丁质结合蛋白的r -1亚家族的成员。当双链RNA在表皮传递时,agsgabd -2样基因被敲低,导致脱皮缺陷和死亡。AgSgAbd-2-like在蜕皮前表达较低,蜕皮后表达增加。蜕皮激素信号持续抑制agsgabd -2样。在组织学上,agsgabd -2样RNA干扰(RNAi)蚜虫的鞘内和整个角质层较薄,这是导致蜕皮缺陷和死亡的主要原因。此外,像agsgabd -2样RNAi一样,敲低任何其他esg同源物,包括AgSgAbd-4、AgSgAbd-4样、agsgabd -8样和agsgabd -9样,都会导致蜕皮缺陷和死亡。这些结果表明,甜瓜蚜虫esg在角质层形成中是保守的,可能是基于rnai的害虫管理的潜在靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The endocuticle structural glycoprotein AgSgAbd-2-like is required for cuticle formation and survival in the melon aphid Aphis gossypii.

Cuticular proteins are essential for cuticle formation, molting, and survival in insects. However, functional analysis of cuticular proteins in the melon aphid has been limited. In this study, we identified an endocuticle structural glycoprotein (ESG) AgSgAbd-2-like in the melon aphid Aphis gossypii, which is a member of the RR-1 subfamily of the CPR (cuticular protein containing the conserved Rebers-Riddiford motif) chitin-binding proteins. When double-stranded RNA is delivered epidermally, AgSgAbd-2-like is knocked down, resulting in molting defects and mortality. The expression of AgSgAbd-2-like is comparatively low prior to molting and increases following molting. Ecdysone signaling consistently suppresses AgSgAbd-2-like. Histologically, the endocuticle and whole cuticle are thinner in AgSgAbd-2-like RNA interference (RNAi) aphids, which is a leading cause of molting defects and mortality. Furthermore, knockdown of any other homolog of ESGs, including AgSgAbd-4, AgSgAbd-4-like, AgSgAbd-8-like, and AgSgAbd-9-like, results in molting defects and death, like that by AgSgAbd-2-like RNAi. These results indicate that the melon aphid ESGs are conserved in cuticle formation and could be potential targets for RNAi-based pest management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Insect Science
Insect Science 生物-昆虫学
CiteScore
7.80
自引率
5.00%
发文量
1379
审稿时长
6.0 months
期刊介绍: Insect Science is an English-language journal, which publishes original research articles dealing with all fields of research in into insects and other terrestrial arthropods. Papers in any of the following fields will be considered: ecology, behavior, biogeography, physiology, biochemistry, sociobiology, phylogeny, pest management, and exotic incursions. The emphasis of the journal is on the adaptation and evolutionary biology of insects from the molecular to the ecosystem level. Reviews, mini reviews and letters to the editor, book reviews, and information about academic activities of the society are also published.
期刊最新文献
Cretaceous lacewing larvae with binocular vision demonstrate the convergent evolution of sophisticated simple eyes. Dextran sodium sulfate-induced colitis-like gut permeability and dysbiosis in honeybees. Diapause hormone receptor affects larval growth and embryonic development in the multivoltine strain of Bombyx mori. MESR4 targets bam to mediate intestinal homeostasis and aging in adult flies. Agonistic interactions between Vespula vulgaris (Linnaeus) and Vespula germanica (Fabricius) (Hymenoptera: Vespidae) during foraging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1