光学相干层析成像对人静脉房交界处的分类。

IF 3 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Journal of Biomedical Optics Pub Date : 2025-01-01 Epub Date: 2025-01-21 DOI:10.1117/1.JBO.30.1.016005
Arielle S Joasil, Aidan M Therien, Christine P Hendon
{"title":"光学相干层析成像对人静脉房交界处的分类。","authors":"Arielle S Joasil, Aidan M Therien, Christine P Hendon","doi":"10.1117/1.JBO.30.1.016005","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.</p><p><strong>Aim: </strong>We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.</p><p><strong>Approach: </strong>A dataset of comprehensive OCT volumes of 26 venoatrial junctions was used for this study. Texture, statistical, and optical features were extracted from OCT patches. Patches were classified as a left atrium or pulmonary vein using random forest (RF), logistic regression (LR), and convolutional neural networks (CNNs). The features were inputs into the RF and LR classifiers. The inputs to the CNNs included: (1) patches and (2) an ensemble of patches and patch-derived features.</p><p><strong>Results: </strong>Utilizing a sevenfold cross-validation, the patch-only CNN balances sensitivity and specificity best, with an area under the receiver operating characteristic (AUROC) curve of <math><mrow><mn>0.84</mn> <mo>±</mo> <mn>0.109</mn></mrow> </math> across the test sets. RF is more sensitive than LR, with an AUROC curve of <math><mrow><mn>0.78</mn> <mo>±</mo> <mn>0.102</mn></mrow> </math> .</p><p><strong>Conclusions: </strong>Cardiac tissues can be identified in benchtop OCT images by automated analysis. Extending this analysis to data obtained <i>in vivo</i> is required to tune automated analysis further. Performing this classification <i>in vivo</i> could aid doctors in identifying substrates of interest and treating AF.</p>","PeriodicalId":15264,"journal":{"name":"Journal of Biomedical Optics","volume":"30 1","pages":"016005"},"PeriodicalIF":3.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Optical coherence tomography-enabled classification of the human venoatrial junction.\",\"authors\":\"Arielle S Joasil, Aidan M Therien, Christine P Hendon\",\"doi\":\"10.1117/1.JBO.30.1.016005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Significance: </strong>Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.</p><p><strong>Aim: </strong>We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.</p><p><strong>Approach: </strong>A dataset of comprehensive OCT volumes of 26 venoatrial junctions was used for this study. Texture, statistical, and optical features were extracted from OCT patches. Patches were classified as a left atrium or pulmonary vein using random forest (RF), logistic regression (LR), and convolutional neural networks (CNNs). The features were inputs into the RF and LR classifiers. The inputs to the CNNs included: (1) patches and (2) an ensemble of patches and patch-derived features.</p><p><strong>Results: </strong>Utilizing a sevenfold cross-validation, the patch-only CNN balances sensitivity and specificity best, with an area under the receiver operating characteristic (AUROC) curve of <math><mrow><mn>0.84</mn> <mo>±</mo> <mn>0.109</mn></mrow> </math> across the test sets. RF is more sensitive than LR, with an AUROC curve of <math><mrow><mn>0.78</mn> <mo>±</mo> <mn>0.102</mn></mrow> </math> .</p><p><strong>Conclusions: </strong>Cardiac tissues can be identified in benchtop OCT images by automated analysis. Extending this analysis to data obtained <i>in vivo</i> is required to tune automated analysis further. Performing this classification <i>in vivo</i> could aid doctors in identifying substrates of interest and treating AF.</p>\",\"PeriodicalId\":15264,\"journal\":{\"name\":\"Journal of Biomedical Optics\",\"volume\":\"30 1\",\"pages\":\"016005\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11747903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomedical Optics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JBO.30.1.016005\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Optics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JBO.30.1.016005","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

意义:射频消融治疗心房颤动需要将肺静脉与左心房隔离,以防止房颤的发生。然而,在肺静脉内造成消融病变可引起不良并发症。目的:我们提出了一种自动分类算法来对人体静脉心房连接的光学相干断层扫描(OCT)体积进行分类。方法:本研究使用了26个静脉心房连接的综合OCT体积数据集。从OCT补丁中提取纹理、统计和光学特征。使用随机森林(RF)、逻辑回归(LR)和卷积神经网络(cnn)将斑块分类为左心房或肺静脉。特征被输入到RF和LR分类器中。cnn的输入包括:(1)补丁和(2)补丁和补丁衍生特征的集合。结果:通过7倍交叉验证,仅贴片的CNN在灵敏度和特异性之间取得了最好的平衡,整个测试集的接收者工作特征(AUROC)曲线下面积为0.84±0.109。RF比LR更敏感,AUROC曲线为0.78±0.102。结论:通过自动分析,可以在台式OCT图像中识别心脏组织。需要将这种分析扩展到体内获得的数据,以进一步调整自动化分析。在体内进行这种分类可以帮助医生识别感兴趣的底物并治疗房颤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optical coherence tomography-enabled classification of the human venoatrial junction.

Significance: Radiofrequency ablation to treat atrial fibrillation (AF) involves isolating the pulmonary vein from the left atria to prevent AF from occurring. However, creating ablation lesions within the pulmonary veins can cause adverse complications.

Aim: We propose automated classification algorithms to classify optical coherence tomography (OCT) volumes of human venoatrial junctions.

Approach: A dataset of comprehensive OCT volumes of 26 venoatrial junctions was used for this study. Texture, statistical, and optical features were extracted from OCT patches. Patches were classified as a left atrium or pulmonary vein using random forest (RF), logistic regression (LR), and convolutional neural networks (CNNs). The features were inputs into the RF and LR classifiers. The inputs to the CNNs included: (1) patches and (2) an ensemble of patches and patch-derived features.

Results: Utilizing a sevenfold cross-validation, the patch-only CNN balances sensitivity and specificity best, with an area under the receiver operating characteristic (AUROC) curve of 0.84 ± 0.109 across the test sets. RF is more sensitive than LR, with an AUROC curve of 0.78 ± 0.102 .

Conclusions: Cardiac tissues can be identified in benchtop OCT images by automated analysis. Extending this analysis to data obtained in vivo is required to tune automated analysis further. Performing this classification in vivo could aid doctors in identifying substrates of interest and treating AF.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.40
自引率
5.70%
发文量
263
审稿时长
2 months
期刊介绍: The Journal of Biomedical Optics publishes peer-reviewed papers on the use of modern optical technology for improved health care and biomedical research.
期刊最新文献
Light-based therapy of infected wounds: a review of dose considerations for photodynamic microbial inactivation and photobiomodulation. Hyperspectral imaging in neurosurgery: a review of systems, computational methods, and clinical applications. Digital instrument simulator to optimize the development of hyperspectral systems: application for intraoperative functional brain mapping. Personal identification using a cross-sectional hyperspectral image of a hand. Hyperspectral analysis to assess gametocytogenesis stage progression in malaria-infected human erythrocytes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1