{"title":"反转录重组酶辅助扩增与侧流试纸和实时荧光相结合的戊型肝炎病毒快速视觉检测。","authors":"Bingyan Wei, Wenlong Wang, Zixuan Guo, Wenjiao Yin, Minheng Cheng, Yifei Yang, Yuewei Tian, Yaxin Sun, Tianlong Liu, Yanxin Hu, Ruiping She, Jijing Tian","doi":"10.1128/jcm.01064-24","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year. Therefore, a rapid and accurate method for detecting HEV in serum or stool samples is essential. In this study, we aimed to develop and evaluate two methods for the rapid and convenient detection of HEV RNA: reverse transcription recombinase-aided amplification with lateral flow dipstick (RT-RAA-LFD) and quantitative real-time reverse transcription recombinase-aided amplification (qRT-RAA). We optimized the reaction conditions and assessed their sensitivity and specificity. The RT-RAA-LFD assay completed its reaction at 39°C within 15 minutes, achieving a 95% limit of detection (LOD) of 247 copies/μL. The qRT-RAA assay, completed at 42°C within 20 minutes, had a 95% LOD of 25 copies/μL. Both assays demonstrated no cross-reactivity with other porcine pathogens and exhibited strong specificity. In testing 245 porcine bile and fecal samples, the RT-RAA-LFD assay showed a kappa value of 0.943 (<i>P</i> < 0.001) with a 97.14% (238/245) coincidence rate compared with quantitative reverse transcription PCR. Similarly, the qRT-RAA assay achieved a kappa value of 0.976 (<i>P</i> < 0.001) with a 98.78% (242/245) coincidence rate. In conclusion, these two RT-RAA assays show promising potential as effective diagnostic tools for broad and efficient screening of swine HEV in veterinary clinics.</p><p><strong>Importance: </strong>Hepatitis E virus (HEV) is a globally widespread zoonotic pathogen that poses a significant public health risk. Swine serve as the primary natural host for zoonotic HEV. This study introduces a rapid and precise method for detecting swine HEV RNA, showcasing its potential as an effective diagnostic tool for comprehensive and efficient screening of swine HEV in veterinary clinics.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0106424"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837526/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence.\",\"authors\":\"Bingyan Wei, Wenlong Wang, Zixuan Guo, Wenjiao Yin, Minheng Cheng, Yifei Yang, Yuewei Tian, Yaxin Sun, Tianlong Liu, Yanxin Hu, Ruiping She, Jijing Tian\",\"doi\":\"10.1128/jcm.01064-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year. Therefore, a rapid and accurate method for detecting HEV in serum or stool samples is essential. In this study, we aimed to develop and evaluate two methods for the rapid and convenient detection of HEV RNA: reverse transcription recombinase-aided amplification with lateral flow dipstick (RT-RAA-LFD) and quantitative real-time reverse transcription recombinase-aided amplification (qRT-RAA). We optimized the reaction conditions and assessed their sensitivity and specificity. The RT-RAA-LFD assay completed its reaction at 39°C within 15 minutes, achieving a 95% limit of detection (LOD) of 247 copies/μL. The qRT-RAA assay, completed at 42°C within 20 minutes, had a 95% LOD of 25 copies/μL. Both assays demonstrated no cross-reactivity with other porcine pathogens and exhibited strong specificity. In testing 245 porcine bile and fecal samples, the RT-RAA-LFD assay showed a kappa value of 0.943 (<i>P</i> < 0.001) with a 97.14% (238/245) coincidence rate compared with quantitative reverse transcription PCR. Similarly, the qRT-RAA assay achieved a kappa value of 0.976 (<i>P</i> < 0.001) with a 98.78% (242/245) coincidence rate. In conclusion, these two RT-RAA assays show promising potential as effective diagnostic tools for broad and efficient screening of swine HEV in veterinary clinics.</p><p><strong>Importance: </strong>Hepatitis E virus (HEV) is a globally widespread zoonotic pathogen that poses a significant public health risk. Swine serve as the primary natural host for zoonotic HEV. This study introduces a rapid and precise method for detecting swine HEV RNA, showcasing its potential as an effective diagnostic tool for comprehensive and efficient screening of swine HEV in veterinary clinics.</p>\",\"PeriodicalId\":15511,\"journal\":{\"name\":\"Journal of Clinical Microbiology\",\"volume\":\" \",\"pages\":\"e0106424\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11837526/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Clinical Microbiology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1128/jcm.01064-24\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.01064-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/16 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence.
Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year. Therefore, a rapid and accurate method for detecting HEV in serum or stool samples is essential. In this study, we aimed to develop and evaluate two methods for the rapid and convenient detection of HEV RNA: reverse transcription recombinase-aided amplification with lateral flow dipstick (RT-RAA-LFD) and quantitative real-time reverse transcription recombinase-aided amplification (qRT-RAA). We optimized the reaction conditions and assessed their sensitivity and specificity. The RT-RAA-LFD assay completed its reaction at 39°C within 15 minutes, achieving a 95% limit of detection (LOD) of 247 copies/μL. The qRT-RAA assay, completed at 42°C within 20 minutes, had a 95% LOD of 25 copies/μL. Both assays demonstrated no cross-reactivity with other porcine pathogens and exhibited strong specificity. In testing 245 porcine bile and fecal samples, the RT-RAA-LFD assay showed a kappa value of 0.943 (P < 0.001) with a 97.14% (238/245) coincidence rate compared with quantitative reverse transcription PCR. Similarly, the qRT-RAA assay achieved a kappa value of 0.976 (P < 0.001) with a 98.78% (242/245) coincidence rate. In conclusion, these two RT-RAA assays show promising potential as effective diagnostic tools for broad and efficient screening of swine HEV in veterinary clinics.
Importance: Hepatitis E virus (HEV) is a globally widespread zoonotic pathogen that poses a significant public health risk. Swine serve as the primary natural host for zoonotic HEV. This study introduces a rapid and precise method for detecting swine HEV RNA, showcasing its potential as an effective diagnostic tool for comprehensive and efficient screening of swine HEV in veterinary clinics.
期刊介绍:
The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.