{"title":"基于蛋白质组学分析的Stanford B型主动脉夹层诊断模型的建立与验证。","authors":"Zihe Zhao, Taicai Chen, Qingyuan Liu, Jianhang Hu, Tong Ling, Yuanhao Tong, Yuexue Han, Zhengyang Zhu, Jianfeng Duan, Yi Jin, Dongsheng Fu, Yuzhu Wang, Chaohui Pan, Reyaguli Keyoumu, Lili Sun, Wendong Li, Xia Gao, Yinghuan Shi, Huan Dou, Zhao Liu","doi":"10.2147/JIR.S494191","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Stanford Type B Aortic Dissection (TBAD), a critical aortic disease, has exhibited stable mortality rates over the past decade. However, diagnostic approaches for TBAD during routine health check-ups are currently lacking. This study focused on developing a model to improve the diagnosis in a population.</p><p><strong>Patients and methods: </strong>Serum biomarkers were investigated in 88 participants using proteomic profiling combined with machine learning. The findings were validated using ELISA in other 80 participants. Subsequently, a diagnostic model for TBAD integrating biomarkers with clinical indicators was developed and assessed using machine learning.</p><p><strong>Results: </strong>Six differentially expressed proteins (DEPs) were identified through proteomic profiling and machine learning in discovery and derivation cohorts. Five of these (GDF-15, IL6, CD58, LY9, and Siglec-7) were further verified through ELISA validation within the validation cohort. In addition, ten blood-related indicators were selected as clinical indicators. Combining biomarkers and clinical indicators, the machine learning-based models performed well (AUC of the biomarker model = 0.865, AUC of the clinical model = 0.904, and AUC of the combined model = 0.909) using relative quantitation. The performance of the three models was verified (AUC of biomarker model = 0.866, AUC of clinical model = 0.868, and AUC of combined model = 0.886) using absolute quantitation. Crucially, the combined models outperformed individual biomarkers and clinical models, demonstrating superior efficacy.</p><p><strong>Conclusion: </strong>Using proteomic profiling, we identified serum IL-6, GDF-15, CD58, LY9, and Siglec-7 as TBAD biomarkers. The machine-learning-based diagnostic model exhibited significant potential for TBAD diagnosis using only blood samples within the population.</p>","PeriodicalId":16107,"journal":{"name":"Journal of Inflammation Research","volume":"18 ","pages":"533-547"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734266/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of a Diagnostic Model for Stanford Type B Aortic Dissection Based on Proteomic Profiling.\",\"authors\":\"Zihe Zhao, Taicai Chen, Qingyuan Liu, Jianhang Hu, Tong Ling, Yuanhao Tong, Yuexue Han, Zhengyang Zhu, Jianfeng Duan, Yi Jin, Dongsheng Fu, Yuzhu Wang, Chaohui Pan, Reyaguli Keyoumu, Lili Sun, Wendong Li, Xia Gao, Yinghuan Shi, Huan Dou, Zhao Liu\",\"doi\":\"10.2147/JIR.S494191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Stanford Type B Aortic Dissection (TBAD), a critical aortic disease, has exhibited stable mortality rates over the past decade. However, diagnostic approaches for TBAD during routine health check-ups are currently lacking. This study focused on developing a model to improve the diagnosis in a population.</p><p><strong>Patients and methods: </strong>Serum biomarkers were investigated in 88 participants using proteomic profiling combined with machine learning. The findings were validated using ELISA in other 80 participants. Subsequently, a diagnostic model for TBAD integrating biomarkers with clinical indicators was developed and assessed using machine learning.</p><p><strong>Results: </strong>Six differentially expressed proteins (DEPs) were identified through proteomic profiling and machine learning in discovery and derivation cohorts. Five of these (GDF-15, IL6, CD58, LY9, and Siglec-7) were further verified through ELISA validation within the validation cohort. In addition, ten blood-related indicators were selected as clinical indicators. Combining biomarkers and clinical indicators, the machine learning-based models performed well (AUC of the biomarker model = 0.865, AUC of the clinical model = 0.904, and AUC of the combined model = 0.909) using relative quantitation. The performance of the three models was verified (AUC of biomarker model = 0.866, AUC of clinical model = 0.868, and AUC of combined model = 0.886) using absolute quantitation. Crucially, the combined models outperformed individual biomarkers and clinical models, demonstrating superior efficacy.</p><p><strong>Conclusion: </strong>Using proteomic profiling, we identified serum IL-6, GDF-15, CD58, LY9, and Siglec-7 as TBAD biomarkers. The machine-learning-based diagnostic model exhibited significant potential for TBAD diagnosis using only blood samples within the population.</p>\",\"PeriodicalId\":16107,\"journal\":{\"name\":\"Journal of Inflammation Research\",\"volume\":\"18 \",\"pages\":\"533-547\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734266/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inflammation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/JIR.S494191\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inflammation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/JIR.S494191","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Development and Validation of a Diagnostic Model for Stanford Type B Aortic Dissection Based on Proteomic Profiling.
Purpose: Stanford Type B Aortic Dissection (TBAD), a critical aortic disease, has exhibited stable mortality rates over the past decade. However, diagnostic approaches for TBAD during routine health check-ups are currently lacking. This study focused on developing a model to improve the diagnosis in a population.
Patients and methods: Serum biomarkers were investigated in 88 participants using proteomic profiling combined with machine learning. The findings were validated using ELISA in other 80 participants. Subsequently, a diagnostic model for TBAD integrating biomarkers with clinical indicators was developed and assessed using machine learning.
Results: Six differentially expressed proteins (DEPs) were identified through proteomic profiling and machine learning in discovery and derivation cohorts. Five of these (GDF-15, IL6, CD58, LY9, and Siglec-7) were further verified through ELISA validation within the validation cohort. In addition, ten blood-related indicators were selected as clinical indicators. Combining biomarkers and clinical indicators, the machine learning-based models performed well (AUC of the biomarker model = 0.865, AUC of the clinical model = 0.904, and AUC of the combined model = 0.909) using relative quantitation. The performance of the three models was verified (AUC of biomarker model = 0.866, AUC of clinical model = 0.868, and AUC of combined model = 0.886) using absolute quantitation. Crucially, the combined models outperformed individual biomarkers and clinical models, demonstrating superior efficacy.
Conclusion: Using proteomic profiling, we identified serum IL-6, GDF-15, CD58, LY9, and Siglec-7 as TBAD biomarkers. The machine-learning-based diagnostic model exhibited significant potential for TBAD diagnosis using only blood samples within the population.
期刊介绍:
An international, peer-reviewed, open access, online journal that welcomes laboratory and clinical findings on the molecular basis, cell biology and pharmacology of inflammation.