一个基于生理学的定量系统药理学模型,用于机制理解对阿格列汀的反应及其在肾功能损害患者中的应用。

IF 2.2 4区 医学 Q3 PHARMACOLOGY & PHARMACY Journal of Pharmacokinetics and Pharmacodynamics Pub Date : 2025-01-16 DOI:10.1007/s10928-025-09961-y
Chaozhuang Shen, Haitang Xie, Xuehua Jiang, Ling Wang
{"title":"一个基于生理学的定量系统药理学模型,用于机制理解对阿格列汀的反应及其在肾功能损害患者中的应用。","authors":"Chaozhuang Shen, Haitang Xie, Xuehua Jiang, Ling Wang","doi":"10.1007/s10928-025-09961-y","DOIUrl":null,"url":null,"abstract":"<p><p>Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose. Based on the optimization of renal function-dependent parameters, the model was extrapolated to different stages renal impairment patients. Ultimately our model adequately describes the pharmacokinetics of alogliptin, the progression of DPP-4 inhibition over time and the dynamics of the glucose control system components. The extrapolation results endorse the dose adjustment regimen of 12.5 mg once daily for moderate patients and 6.25 mg once daily for severe and ESRD patients, while providing additional reflections and insights. In clinical practice, our model could provide additional information on the in vivo fate of DPP4 inhibitors and key regulators of the glucose control system.</p>","PeriodicalId":16851,"journal":{"name":"Journal of Pharmacokinetics and Pharmacodynamics","volume":"52 1","pages":"13"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.\",\"authors\":\"Chaozhuang Shen, Haitang Xie, Xuehua Jiang, Ling Wang\",\"doi\":\"10.1007/s10928-025-09961-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose. Based on the optimization of renal function-dependent parameters, the model was extrapolated to different stages renal impairment patients. Ultimately our model adequately describes the pharmacokinetics of alogliptin, the progression of DPP-4 inhibition over time and the dynamics of the glucose control system components. The extrapolation results endorse the dose adjustment regimen of 12.5 mg once daily for moderate patients and 6.25 mg once daily for severe and ESRD patients, while providing additional reflections and insights. In clinical practice, our model could provide additional information on the in vivo fate of DPP4 inhibitors and key regulators of the glucose control system.</p>\",\"PeriodicalId\":16851,\"journal\":{\"name\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"volume\":\"52 1\",\"pages\":\"13\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacokinetics and Pharmacodynamics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s10928-025-09961-y\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacokinetics and Pharmacodynamics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10928-025-09961-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

阿格列汀是二肽基肽酶-4的高选择性抑制剂,主要以不变药物形式通过尿液排出,肾功能损害患者临床结局的差异增加了发生严重不良反应的风险。在这项研究中,我们建立了一个全面的基于生理学的阿格列汀-葡萄糖控制系统的定量系统药理学模型来预测血浆暴露,并将葡萄糖作为临床终点来前瞻性地了解其治疗结果与不同的肾功能。我们的模型结合了阿格列汀的PBPK模型,受体占用理论描述的DPP-4活性,glp -1- gip -胰高血糖素,胰岛素和葡萄糖的串扰和反馈回路。在优化肾功能相关参数的基础上,将模型外推到不同阶段的肾功能损害患者。最终,我们的模型充分描述了阿格列汀的药代动力学、DPP-4抑制随时间的进展以及葡萄糖控制系统组分的动力学。外推结果支持剂量调整方案:中度患者12.5 mg每日一次,重度和ESRD患者6.25 mg每日一次,同时提供了额外的反思和见解。在临床实践中,我们的模型可以为DPP4抑制剂和葡萄糖控制系统的关键调节因子的体内命运提供额外的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment.

Alogliptin is a highly selective inhibitor of dipeptidyl peptidase-4 and primarily excreted as unchanged drug in the urine, and differences in clinical outcomes in renal impairment patients increase the risk of serious adverse reactions. In this study, we developed a comprehensive physiologically-based quantitative systematic pharmacology model of the alogliptin-glucose control system to predict plasma exposure and use glucose as a clinical endpoint to prospectively understand its therapeutic outcomes with varying renal function. Our model incorporates a PBPK model for alogliptin, DPP-4 activity described by receptor occupancy theory, and the crosstalk and feedback loops for GLP-1-GIP-glucagon, insulin, and glucose. Based on the optimization of renal function-dependent parameters, the model was extrapolated to different stages renal impairment patients. Ultimately our model adequately describes the pharmacokinetics of alogliptin, the progression of DPP-4 inhibition over time and the dynamics of the glucose control system components. The extrapolation results endorse the dose adjustment regimen of 12.5 mg once daily for moderate patients and 6.25 mg once daily for severe and ESRD patients, while providing additional reflections and insights. In clinical practice, our model could provide additional information on the in vivo fate of DPP4 inhibitors and key regulators of the glucose control system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
4.00%
发文量
39
审稿时长
6-12 weeks
期刊介绍: Broadly speaking, the Journal of Pharmacokinetics and Pharmacodynamics covers the area of pharmacometrics. The journal is devoted to illustrating the importance of pharmacokinetics, pharmacodynamics, and pharmacometrics in drug development, clinical care, and the understanding of drug action. The journal publishes on a variety of topics related to pharmacometrics, including, but not limited to, clinical, experimental, and theoretical papers examining the kinetics of drug disposition and effects of drug action in humans, animals, in vitro, or in silico; modeling and simulation methodology, including optimal design; precision medicine; systems pharmacology; and mathematical pharmacology (including computational biology, bioengineering, and biophysics related to pharmacology, pharmacokinetics, orpharmacodynamics). Clinical papers that include population pharmacokinetic-pharmacodynamic relationships are welcome. The journal actively invites and promotes up-and-coming areas of pharmacometric research, such as real-world evidence, quality of life analyses, and artificial intelligence. The Journal of Pharmacokinetics and Pharmacodynamics is an official journal of the International Society of Pharmacometrics.
期刊最新文献
Quantifying natural amyloid plaque accumulation in the continuum of Alzheimer's disease using ADNI. Stronger together: a cross-SIG perspective on improving drug development. A physiologically-based quantitative systems pharmacology model for mechanistic understanding of the response to alogliptin and its application in patients with renal impairment. No QT interval prolongation effect of sepiapterin: a concentration-QTc analysis of pooled data from phase 1 and phase 3 studies in healthy volunteers and patients with phenylketonuria. Do P-glycoprotein-mediated drug-drug interactions at the blood-brain barrier impact morphine brain distribution?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1