Milad Soleimani, Mark Duchow, Ria Goyal, Alexander Somma, Tamer S Kaoud, Kevin N Dalby, Jeanne Kowalski, S Gail Eckhardt, Carla Van Den Berg
{"title":"转录因子EB (TFEB)活性增加TNBC干细胞对代谢应激的抗性。","authors":"Milad Soleimani, Mark Duchow, Ria Goyal, Alexander Somma, Tamer S Kaoud, Kevin N Dalby, Jeanne Kowalski, S Gail Eckhardt, Carla Van Den Berg","doi":"10.26508/lsa.202302259","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44<sup>high</sup>/CD24<sup>low</sup> cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735543/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transcription factor EB (TFEB) activity increases resistance of TNBC stem cells to metabolic stress.\",\"authors\":\"Milad Soleimani, Mark Duchow, Ria Goyal, Alexander Somma, Tamer S Kaoud, Kevin N Dalby, Jeanne Kowalski, S Gail Eckhardt, Carla Van Den Berg\",\"doi\":\"10.26508/lsa.202302259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44<sup>high</sup>/CD24<sup>low</sup> cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735543/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202302259\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202302259","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Transcription factor EB (TFEB) activity increases resistance of TNBC stem cells to metabolic stress.
Breast cancer stem cells (CSCs) are difficult to therapeutically target, but continued efforts are critical given their contribution to tumor heterogeneity and treatment resistance in triple-negative breast cancer. CSC properties are influenced by metabolic stress, but specific mechanisms are lacking for effective drug intervention. Our previous work on TFEB suggested a key function in CSC metabolism. Indeed, TFEB knockdown (KD) inhibited mammosphere formation in vitro and tumor initiation/growth in vivo. These phenotypic effects were accompanied by a decline in CD44high/CD24low cells. Glycolysis inhibitor 2-deoxy-D-glucose (2-DG) induced TFEB nuclear translocation, indicative of TFEB transcriptional activity. TFEB KD blunted, whereas TFEB (S142A) augmented 2-DG-driven unfolded protein response (UPR) mediators, notably BiP/HSPA5 and CHOP. Like TFEB KD, silencing BiP/HSPA5 inhibited CSC self-renewal, suggesting that TFEB augments UPR-related survival. Further studies showed that TFEB KD attenuated 2-DG-directed autophagy, suggesting a mechanism whereby TFEB protects CSCs against 2-DG-induced stress. Our data indicate that TFEB modulates CSC metabolic stress response via autophagy and UPR. These findings reveal the novel role of TFEB in regulating CSCs during metabolic stress in triple-negative breast cancer.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.