Go Shioi, Tomonobu M Watanabe, Junichi Kaneshiro, Yusuke Azuma, Shuichi Onami
{"title":"利用培养型双轴光片显微镜对E5.5小鼠胚胎进行跨尺度实时成像。","authors":"Go Shioi, Tomonobu M Watanabe, Junichi Kaneshiro, Yusuke Azuma, Shuichi Onami","doi":"10.26508/lsa.202402839","DOIUrl":null,"url":null,"abstract":"<p><p>During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.</p>","PeriodicalId":18081,"journal":{"name":"Life Science Alliance","volume":"8 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735545/pdf/","citationCount":"0","resultStr":"{\"title\":\"Trans-scale live-imaging of an E5.5 mouse embryo using incubator-type biaxial light-sheet microscopy.\",\"authors\":\"Go Shioi, Tomonobu M Watanabe, Junichi Kaneshiro, Yusuke Azuma, Shuichi Onami\",\"doi\":\"10.26508/lsa.202402839\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.</p>\",\"PeriodicalId\":18081,\"journal\":{\"name\":\"Life Science Alliance\",\"volume\":\"8 3\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735545/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Life Science Alliance\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.26508/lsa.202402839\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"Print\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Science Alliance","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.26508/lsa.202402839","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
Trans-scale live-imaging of an E5.5 mouse embryo using incubator-type biaxial light-sheet microscopy.
During mouse embryonic development, the embryonic day (E) 5.5 stage represents a crucial period for the formation of the primitive body axis, where the symmetry breaking of cellular states influences the multicellular system. Elucidating the detailed mechanisms of this process necessitates a trans-layered dynamic observation of the embryo and all internal cells. In this report, we present our success in achieving in-toto single-cell observation in a whole hemisphere of an E5.5 embryo for 12 h, using a newly developed incubator-type biaxial light-sheet microscope. To achieve the success, we optimized our microscope system, including an incubator for culture stability, and refining the observation protocol to reduce phototoxicity. Our key discovery is that the scan speed during light-sheet formation plays a critical role in reducing phototoxicity, rather than the irradiation intensity or the interval time between frames. This innovative system not only enabled in-toto single-cell tracking but also led to the discovery of the abrupt shrinking of embryos whose contractile center was located at the extraembryonic ectoderm during monotonous growth up to the E6.5 stage.
期刊介绍:
Life Science Alliance is a global, open-access, editorially independent, and peer-reviewed journal launched by an alliance of EMBO Press, Rockefeller University Press, and Cold Spring Harbor Laboratory Press. Life Science Alliance is committed to rapid, fair, and transparent publication of valuable research from across all areas in the life sciences.