实验血流分析用心血管模型的快速制造方法。

IF 1.6 Q2 MULTIDISCIPLINARY SCIENCES MethodsX Pub Date : 2024-12-21 DOI:10.1016/j.mex.2024.103124
Jarrett Fowler , Andrew B. Robbins , Cathryn Gunawan , Andrew Jastram , Michael Moreno
{"title":"实验血流分析用心血管模型的快速制造方法。","authors":"Jarrett Fowler ,&nbsp;Andrew B. Robbins ,&nbsp;Cathryn Gunawan ,&nbsp;Andrew Jastram ,&nbsp;Michael Moreno","doi":"10.1016/j.mex.2024.103124","DOIUrl":null,"url":null,"abstract":"<div><div>Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging. This limits their utility for modeling flows in vessels, <em>e.</em>g<em>.</em>, the aorta, where compliance is particularly important. The work described herein is focused on a unique design and fabrication process implemented to produce physical patient-specific models that replicate the original anatomy dimensions and compliance with optical properties consistent with clinical imaging techniques. The patient-specific models are produced for under $150 of easily accessible consumable raw materials within 30 h using a relatively basic approach.<ul><li><span>•</span><span><div>This method can be tuned for anatomies with different shapes and compliance.</div></span></li><li><span>•</span><span><div>This method can produce models to investigate medical device performance <em>in vitro</em>.</div></span></li></ul></div></div>","PeriodicalId":18446,"journal":{"name":"MethodsX","volume":"14 ","pages":"Article 103124"},"PeriodicalIF":1.6000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743567/pdf/","citationCount":"0","resultStr":"{\"title\":\"Rapid Manufacturing Method of Cardiovascular Models for Experimental Flow Analysis\",\"authors\":\"Jarrett Fowler ,&nbsp;Andrew B. Robbins ,&nbsp;Cathryn Gunawan ,&nbsp;Andrew Jastram ,&nbsp;Michael Moreno\",\"doi\":\"10.1016/j.mex.2024.103124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging. This limits their utility for modeling flows in vessels, <em>e.</em>g<em>.</em>, the aorta, where compliance is particularly important. The work described herein is focused on a unique design and fabrication process implemented to produce physical patient-specific models that replicate the original anatomy dimensions and compliance with optical properties consistent with clinical imaging techniques. The patient-specific models are produced for under $150 of easily accessible consumable raw materials within 30 h using a relatively basic approach.<ul><li><span>•</span><span><div>This method can be tuned for anatomies with different shapes and compliance.</div></span></li><li><span>•</span><span><div>This method can produce models to investigate medical device performance <em>in vitro</em>.</div></span></li></ul></div></div>\",\"PeriodicalId\":18446,\"journal\":{\"name\":\"MethodsX\",\"volume\":\"14 \",\"pages\":\"Article 103124\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743567/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MethodsX\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215016124005752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MethodsX","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215016124005752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

从医学图像构建的物理解剖模型是评估患者特定临床情况的有价值的研究工具。例如,复制患者心血管系统内部解剖结构的3D模型可用于验证计算流体动力学(CFD)模型,该模型可用于通过深入了解血液和血管组织力学如何影响疾病进展和术后并发症,从而确定手术决策的潜在血液动力学后果。文献中描述了患者特异性模型;然而,在成本和时间效益的方法中实现解剖精度,光学透明度和薄壁依从性的快速原型模型已被证明具有挑战性。这限制了它们在血管(如主动脉)中建模的实用性,在血管中,顺应性是特别重要的。本文所述的工作重点是一种独特的设计和制造工艺,用于生产复制原始解剖尺寸的物理患者特定模型,并符合与临床成像技术一致的光学特性。患者专用模型使用相对基本的方法,在30小时内以低于150美元的价格生产出易于获取的消耗性原材料。•该方法可针对不同形状和顺应性的解剖结构进行调整。•该方法可以生成模型,以在体外研究医疗器械的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Manufacturing Method of Cardiovascular Models for Experimental Flow Analysis
Physical anatomical models constructed from medical images are valuable research tools for evaluating patient-specific clinical circumstances. For example, 3D models replicating a patient's internal anatomy in the cardiovascular system can be used to validate Computational Fluid Dynamics (CFD) models, which can then be used to identify potential hemodynamic consequences of surgical decisions by providing insight into how blood and vascular tissue mechanics may contribute to disease progression and post-operative complications. Patient-specific models have been described in the literature; however, rapid prototyping models that achieve anatomical accuracy, optical transparency, and thin-walled compliance in a cost and time-effective approach have proven challenging. This limits their utility for modeling flows in vessels, e.g., the aorta, where compliance is particularly important. The work described herein is focused on a unique design and fabrication process implemented to produce physical patient-specific models that replicate the original anatomy dimensions and compliance with optical properties consistent with clinical imaging techniques. The patient-specific models are produced for under $150 of easily accessible consumable raw materials within 30 h using a relatively basic approach.
  • This method can be tuned for anatomies with different shapes and compliance.
  • This method can produce models to investigate medical device performance in vitro.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
MethodsX
MethodsX Health Professions-Medical Laboratory Technology
CiteScore
3.60
自引率
5.30%
发文量
314
审稿时长
7 weeks
期刊介绍:
期刊最新文献
Determination of the method of induction of mutations by gamma radiation in soybeans (Glycine max L. Merrill) for tolerance to carbonic rot produced by the fungus Macrophomina phaseolina (Tassi Goid.) Simple DNA extraction for museum beetle specimens to unlock genetic data from historical collections A new method and information system based on artificial intelligence for black flight identification Multi-criteria evaluation and multi-method analysis for appropriately selecting renewable energy sources in Colombia EMI-LTI: An enhanced integrated model for lung tumor identification using Gabor filter and ROI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1