Xinying Zhang, Zifeng Wu, Siqi Yang, Yuanyuan Wang, Suwan Hu, Yawei Ji, Qi Zhang, Yuchen Bu, Chenqi Jiang, Jingyao Huang, Haoran Wang, Di Wang, Chaoli Huang, Peng Jiang, Cunming Liu, Xiaolin Yang, Chun Yang, Ling Yang, Riyue Jiang
{"title":"室旁核中cd38介导的催产素信号与共情疼痛有关。","authors":"Xinying Zhang, Zifeng Wu, Siqi Yang, Yuanyuan Wang, Suwan Hu, Yawei Ji, Qi Zhang, Yuchen Bu, Chenqi Jiang, Jingyao Huang, Haoran Wang, Di Wang, Chaoli Huang, Peng Jiang, Cunming Liu, Xiaolin Yang, Chun Yang, Ling Yang, Riyue Jiang","doi":"10.1016/j.neuropharm.2025.110301","DOIUrl":null,"url":null,"abstract":"<p><p>Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected. Furthermore, fiber photometry recordings indicated that calcium activities of PVN neurons were increased during empathic pain. Interestingly, direct chemogenetic inhibition of PVN neurons attenuated the hyperalgesia and anxiety-like behaviors associated with empathic pain. In contrast, activating PVN neurons through chemogenetics in CD38KO mice induced hyperalgesia and anxiety-like effects in empathic pain. Oxytocin levels in PVN were upregulated during empathic pain, while CD38KO mice inhibit the upregulation in OXT levels, confirming that CD38 is involved in releasing brain OXT and that the CD38-OXT system in the PVN plays a role in empathic pain. Collectively, CD38-mediated oxytocin signaling in PVN is closely linked to empathic pain through its effect on the activation of PVN neurons, and it could be viable targets for novel empathic behavior interventions.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":"267 ","pages":"110301"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CD38-mediated oxytocin signaling in paraventricular nucleus contributes to empathic pain.\",\"authors\":\"Xinying Zhang, Zifeng Wu, Siqi Yang, Yuanyuan Wang, Suwan Hu, Yawei Ji, Qi Zhang, Yuchen Bu, Chenqi Jiang, Jingyao Huang, Haoran Wang, Di Wang, Chaoli Huang, Peng Jiang, Cunming Liu, Xiaolin Yang, Chun Yang, Ling Yang, Riyue Jiang\",\"doi\":\"10.1016/j.neuropharm.2025.110301\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected. Furthermore, fiber photometry recordings indicated that calcium activities of PVN neurons were increased during empathic pain. Interestingly, direct chemogenetic inhibition of PVN neurons attenuated the hyperalgesia and anxiety-like behaviors associated with empathic pain. In contrast, activating PVN neurons through chemogenetics in CD38KO mice induced hyperalgesia and anxiety-like effects in empathic pain. Oxytocin levels in PVN were upregulated during empathic pain, while CD38KO mice inhibit the upregulation in OXT levels, confirming that CD38 is involved in releasing brain OXT and that the CD38-OXT system in the PVN plays a role in empathic pain. Collectively, CD38-mediated oxytocin signaling in PVN is closely linked to empathic pain through its effect on the activation of PVN neurons, and it could be viable targets for novel empathic behavior interventions.</p>\",\"PeriodicalId\":19139,\"journal\":{\"name\":\"Neuropharmacology\",\"volume\":\"267 \",\"pages\":\"110301\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuropharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuropharm.2025.110301\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2025.110301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
CD38-mediated oxytocin signaling in paraventricular nucleus contributes to empathic pain.
Empathy plays a crucial role in social communication and the perception of affective states and behavioral processes. In this study, we observed that empathic interaction with a mouse experiencing pain resulted in decreased mechanical pain thresholds and anxiety-like behaviors in its bystander, though the underlying mechanisms remain unknown. We demonstrated that CD38 expression in the paraventricular nucleus (PVN) was upregulated during empathic pain, and the pain and emotions of CD38 knockout (CD38KO) mice as bystanders were not affected. Furthermore, fiber photometry recordings indicated that calcium activities of PVN neurons were increased during empathic pain. Interestingly, direct chemogenetic inhibition of PVN neurons attenuated the hyperalgesia and anxiety-like behaviors associated with empathic pain. In contrast, activating PVN neurons through chemogenetics in CD38KO mice induced hyperalgesia and anxiety-like effects in empathic pain. Oxytocin levels in PVN were upregulated during empathic pain, while CD38KO mice inhibit the upregulation in OXT levels, confirming that CD38 is involved in releasing brain OXT and that the CD38-OXT system in the PVN plays a role in empathic pain. Collectively, CD38-mediated oxytocin signaling in PVN is closely linked to empathic pain through its effect on the activation of PVN neurons, and it could be viable targets for novel empathic behavior interventions.
期刊介绍:
Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).