Grpr神经元中NPY-Y1R系统的下调导致慢性瘙痒的机械和化学亢进。

IF 5.1 2区 医学 Q1 NEUROSCIENCES Neurobiology of Disease Pub Date : 2025-01-17 DOI:10.1016/j.nbd.2025.106806
Danqing Dai, Zongxi Li, Tiantian Zhao, Zhen Li, Yali Tang, Xiujuan Li, Xiao-Fei Gao, Lize Xiong
{"title":"Grpr神经元中NPY-Y1R系统的下调导致慢性瘙痒的机械和化学亢进。","authors":"Danqing Dai, Zongxi Li, Tiantian Zhao, Zhen Li, Yali Tang, Xiujuan Li, Xiao-Fei Gao, Lize Xiong","doi":"10.1016/j.nbd.2025.106806","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord. Our findings reveal a direct synaptic connection whereby Npy neurons provide inhibitory modulation to Grpr neurons. Notably, during chronic itch, the activity of Grpr neurons was significantly elevated, coinciding with a decrease in Y1 receptor expression and a reduction in both the frequency and amplitude of inhibitory postsynaptic currents (IPSCs). These results suggest a decline in NPY/Y1R system function during chronic itch, leading to a decreased inhibitory influence of Npy neurons on Grpr neurons and subsequent disinhibition and excitation of the latter. This disinhibitory mechanism may underlie the enhanced responsiveness to mechanical and chemical itch stimuli in chronic itch patients.</p>","PeriodicalId":19097,"journal":{"name":"Neurobiology of Disease","volume":" ","pages":"106806"},"PeriodicalIF":5.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Downregulation of the NPY-Y1R system in Grpr neurons results in mechanical and chemical hyperknesis in chronic itch.\",\"authors\":\"Danqing Dai, Zongxi Li, Tiantian Zhao, Zhen Li, Yali Tang, Xiujuan Li, Xiao-Fei Gao, Lize Xiong\",\"doi\":\"10.1016/j.nbd.2025.106806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord. Our findings reveal a direct synaptic connection whereby Npy neurons provide inhibitory modulation to Grpr neurons. Notably, during chronic itch, the activity of Grpr neurons was significantly elevated, coinciding with a decrease in Y1 receptor expression and a reduction in both the frequency and amplitude of inhibitory postsynaptic currents (IPSCs). These results suggest a decline in NPY/Y1R system function during chronic itch, leading to a decreased inhibitory influence of Npy neurons on Grpr neurons and subsequent disinhibition and excitation of the latter. This disinhibitory mechanism may underlie the enhanced responsiveness to mechanical and chemical itch stimuli in chronic itch patients.</p>\",\"PeriodicalId\":19097,\"journal\":{\"name\":\"Neurobiology of Disease\",\"volume\":\" \",\"pages\":\"106806\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Disease\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.nbd.2025.106806\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Disease","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.nbd.2025.106806","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

慢性瘙痒仍然是一种具有临床挑战性的疾病,治疗效果有限,对患者的生活质量造成了重大负担。尽管它很普遍,但潜在的神经机制仍然知之甚少。在这项研究中,我们探讨了神经肽Y (NPY)神经元与脊髓胃泌素释放肽受体(GRPR)神经元之间的突触关系。我们的研究结果揭示了一种直接的突触连接,即Npy神经元对Grpr神经元提供抑制调节。值得注意的是,在慢性瘙痒期间,Grpr神经元的活性显著升高,与Y1受体表达减少以及抑制性突触后电流(IPSCs)的频率和幅度减少相一致。这些结果表明,在慢性瘙痒过程中,NPY/Y1R系统功能下降,导致NPY神经元对Grpr神经元的抑制作用下降,并导致后者的去抑制和兴奋。这种去抑制机制可能是慢性瘙痒患者对机械和化学瘙痒刺激反应增强的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Downregulation of the NPY-Y1R system in Grpr neurons results in mechanical and chemical hyperknesis in chronic itch.

Chronic itch remains a clinically challenging condition with limited therapeutic efficacy, posing a significant burden on patients' quality of life. Despite its prevalence, the underlying neural mechanisms remain poorly understood. In this study, we explored the synaptic relationships between neuropeptide Y (NPY) neurons and gastrin-releasing peptide receptor (GRPR) neurons in the spinal cord. Our findings reveal a direct synaptic connection whereby Npy neurons provide inhibitory modulation to Grpr neurons. Notably, during chronic itch, the activity of Grpr neurons was significantly elevated, coinciding with a decrease in Y1 receptor expression and a reduction in both the frequency and amplitude of inhibitory postsynaptic currents (IPSCs). These results suggest a decline in NPY/Y1R system function during chronic itch, leading to a decreased inhibitory influence of Npy neurons on Grpr neurons and subsequent disinhibition and excitation of the latter. This disinhibitory mechanism may underlie the enhanced responsiveness to mechanical and chemical itch stimuli in chronic itch patients.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neurobiology of Disease
Neurobiology of Disease 医学-神经科学
CiteScore
11.20
自引率
3.30%
发文量
270
审稿时长
76 days
期刊介绍: Neurobiology of Disease is a major international journal at the interface between basic and clinical neuroscience. The journal provides a forum for the publication of top quality research papers on: molecular and cellular definitions of disease mechanisms, the neural systems and underpinning behavioral disorders, the genetics of inherited neurological and psychiatric diseases, nervous system aging, and findings relevant to the development of new therapies.
期刊最新文献
Alpha-synuclein pathology enhances peripheral and CNS immune responses to bacterial endotoxins. Synaptic modulation of glutamate in striatum of the YAC128 mouse model of Huntington disease. Globular-shaped Aβ oligomers have diverse mechanisms for promoting Aβ aggregations with the facilitation of fibril elongation. Peripheral nerve injury induces dystonia-like movements and dysregulation in the energy metabolism: A multi-omics descriptive study in Thap1+/- mice. Spectral and coupling characteristics of somatosensory cortex and centromedian thalamus differentiate between pre- and inter-ictal 5-9 Hz oscillations in a genetic rat model of absence epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1