Danyue Li , Weilv Xu , Suhui He , Xinyue Li , Yumeng Wang , Qian Lv , Nan Chen , Lu Dong , Feng Guo , Fushan Shi
{"title":"黄芩苷通过选择性自噬降解p30/GSDMD和抑制ASC寡聚来抑制焦亡。","authors":"Danyue Li , Weilv Xu , Suhui He , Xinyue Li , Yumeng Wang , Qian Lv , Nan Chen , Lu Dong , Feng Guo , Fushan Shi","doi":"10.1016/j.phrs.2025.107605","DOIUrl":null,"url":null,"abstract":"<div><div>Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in <em>Erigeron breviscapus</em>, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes. In this study, SCU demonstrated efficacy in hindering pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome, absent in melanoma 2 (AIM2) inflammasome, NLR-family CARD-containing protein 4 (NLRC4) inflammasome, and that activated through the non-canonical pathway. The inhibitory effect is achieved by thwarting apoptosis-associated speck-like protein containing CARD (ASC) oligomerization and inducing the ubiquitin-dependent selective autophagy of p30/GSDMD. Throughout the autophagic process, SCU facilitates selective autophagy of the pyroptosis executor p30/GSDMD through K33-linked polyubiquitination at Lys51 catalyzed by the E3 ligase tripartite motif-containing 21 (TRIM21). This process contributes to the recognition of p30/GSDMD by the cargo receptor sequestosome 1 (SQSTM1)/p62. The characteristic positions SCU as a prospective clinical intervention for a broader spectrum of inflammatory-related disorders.</div></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":"212 ","pages":"Article 107605"},"PeriodicalIF":9.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization\",\"authors\":\"Danyue Li , Weilv Xu , Suhui He , Xinyue Li , Yumeng Wang , Qian Lv , Nan Chen , Lu Dong , Feng Guo , Fushan Shi\",\"doi\":\"10.1016/j.phrs.2025.107605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in <em>Erigeron breviscapus</em>, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes. In this study, SCU demonstrated efficacy in hindering pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome, absent in melanoma 2 (AIM2) inflammasome, NLR-family CARD-containing protein 4 (NLRC4) inflammasome, and that activated through the non-canonical pathway. The inhibitory effect is achieved by thwarting apoptosis-associated speck-like protein containing CARD (ASC) oligomerization and inducing the ubiquitin-dependent selective autophagy of p30/GSDMD. Throughout the autophagic process, SCU facilitates selective autophagy of the pyroptosis executor p30/GSDMD through K33-linked polyubiquitination at Lys51 catalyzed by the E3 ligase tripartite motif-containing 21 (TRIM21). This process contributes to the recognition of p30/GSDMD by the cargo receptor sequestosome 1 (SQSTM1)/p62. The characteristic positions SCU as a prospective clinical intervention for a broader spectrum of inflammatory-related disorders.</div></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":\"212 \",\"pages\":\"Article 107605\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661825000301\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661825000301","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
Scutellarin inhibits pyroptosis via selective autophagy degradation of p30/GSDMD and suppression of ASC oligomerization
Most of the pyroptosis inhibitors targeted Gasdermin D (GSDMD) are functioning by restraining GSDMD-N (p30) oligomerization. For the first time, this work discovered a pyroptosis inhibitor taking effect by degrading p30 and GSDMD. As the principal bioactive constituent in Erigeron breviscapus, scutellarin (SCU) assumes a pivotal role in the realm of anti-inflammatory processes. In this study, SCU demonstrated efficacy in hindering pyroptosis mediated by the NOD-like receptor protein 3 (NLRP3) inflammasome, absent in melanoma 2 (AIM2) inflammasome, NLR-family CARD-containing protein 4 (NLRC4) inflammasome, and that activated through the non-canonical pathway. The inhibitory effect is achieved by thwarting apoptosis-associated speck-like protein containing CARD (ASC) oligomerization and inducing the ubiquitin-dependent selective autophagy of p30/GSDMD. Throughout the autophagic process, SCU facilitates selective autophagy of the pyroptosis executor p30/GSDMD through K33-linked polyubiquitination at Lys51 catalyzed by the E3 ligase tripartite motif-containing 21 (TRIM21). This process contributes to the recognition of p30/GSDMD by the cargo receptor sequestosome 1 (SQSTM1)/p62. The characteristic positions SCU as a prospective clinical intervention for a broader spectrum of inflammatory-related disorders.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.