他克莫司与糖尿病啮齿动物模型。

IF 3.6 3区 医学 Q2 PHARMACOLOGY & PHARMACY Pharmacological Reports Pub Date : 2025-01-21 DOI:10.1007/s43440-024-00693-3
Minyan Qian, Mengmeng Guan, Liying Wang, Nan Hu
{"title":"他克莫司与糖尿病啮齿动物模型。","authors":"Minyan Qian, Mengmeng Guan, Liying Wang, Nan Hu","doi":"10.1007/s43440-024-00693-3","DOIUrl":null,"url":null,"abstract":"<p><p>Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects. In addition, TAC can induce cost-effective, non-obese animal models of diabetes, where the metabolic parameter changes closely resemble those observed during the onset and progression of type 2 diabetes (T2DM), post-transplantation diabetes mellitus (PTDM), and associated complications. This review, based on articles indexed in PubMed up to August 19, 2024, identified 48 studies focusing on TAC-induced diabetic rodent models and 22 studies exploring the effects of TAC on diabetic or obese rodent models. These studies were systematically summarized based on TAC dosage, route of administration, duration of administration, and glucose metabolism indices used for evaluation. Additionally, the impact of TAC dose reduction or discontinuation on glucose metabolism was assessed, along with pharmacological agents that modulate TAC-induced diabetes, including anti-diabetic medications, anti-inflammatory and antioxidant compounds, biologics, and antibiotics. Key signaling pathways implicated in TAC-induced diabetes include CaN/NFAT, PI3K/AKT/mTOR, and TGF-β/Smad, all of which impair islet β-cell function, thereby contributing to diabetes development. This review provides a concise summary of the characteristics of relevant murine models, offering valuable guidance for selecting appropriate and economical animal models for future research.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tacrolimus and diabetic rodent models.\",\"authors\":\"Minyan Qian, Mengmeng Guan, Liying Wang, Nan Hu\",\"doi\":\"10.1007/s43440-024-00693-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects. In addition, TAC can induce cost-effective, non-obese animal models of diabetes, where the metabolic parameter changes closely resemble those observed during the onset and progression of type 2 diabetes (T2DM), post-transplantation diabetes mellitus (PTDM), and associated complications. This review, based on articles indexed in PubMed up to August 19, 2024, identified 48 studies focusing on TAC-induced diabetic rodent models and 22 studies exploring the effects of TAC on diabetic or obese rodent models. These studies were systematically summarized based on TAC dosage, route of administration, duration of administration, and glucose metabolism indices used for evaluation. Additionally, the impact of TAC dose reduction or discontinuation on glucose metabolism was assessed, along with pharmacological agents that modulate TAC-induced diabetes, including anti-diabetic medications, anti-inflammatory and antioxidant compounds, biologics, and antibiotics. Key signaling pathways implicated in TAC-induced diabetes include CaN/NFAT, PI3K/AKT/mTOR, and TGF-β/Smad, all of which impair islet β-cell function, thereby contributing to diabetes development. This review provides a concise summary of the characteristics of relevant murine models, offering valuable guidance for selecting appropriate and economical animal models for future research.</p>\",\"PeriodicalId\":19947,\"journal\":{\"name\":\"Pharmacological Reports\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s43440-024-00693-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-024-00693-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

他克莫司(TAC)是一种广泛应用于器官移植的免疫抑制剂。它的主要副作用之一是葡萄糖代谢紊乱,这大大增加了患糖尿病的风险。研究tac诱导糖尿病的分子机制对于制定有效的预防和治疗这些不良反应的策略至关重要。此外,TAC可以诱导具有成本效益的非肥胖糖尿病动物模型,其中代谢参数变化与2型糖尿病(T2DM),移植后糖尿病(PTDM)及其相关并发症的发生和进展过程中观察到的变化非常相似。本综述基于截至2024年8月19日PubMed收录的文章,确定了48项研究关注TAC诱导的糖尿病啮齿动物模型,22项研究探讨TAC对糖尿病或肥胖啮齿动物模型的影响。根据TAC的给药剂量、给药途径、给药时间、糖代谢指标进行评价,对这些研究进行系统总结。此外,还评估了TAC剂量减少或停药对葡萄糖代谢的影响,以及调节TAC诱导的糖尿病的药理学药物,包括抗糖尿病药物、抗炎和抗氧化化合物、生物制剂和抗生素。与tac诱导的糖尿病相关的关键信号通路包括CaN/NFAT、PI3K/AKT/mTOR和TGF-β/Smad,它们都损害胰岛β细胞的功能,从而促进糖尿病的发展。本文综述了相关小鼠模型的特点,为今后选择合适、经济的动物模型进行研究提供有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tacrolimus and diabetic rodent models.

Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects. In addition, TAC can induce cost-effective, non-obese animal models of diabetes, where the metabolic parameter changes closely resemble those observed during the onset and progression of type 2 diabetes (T2DM), post-transplantation diabetes mellitus (PTDM), and associated complications. This review, based on articles indexed in PubMed up to August 19, 2024, identified 48 studies focusing on TAC-induced diabetic rodent models and 22 studies exploring the effects of TAC on diabetic or obese rodent models. These studies were systematically summarized based on TAC dosage, route of administration, duration of administration, and glucose metabolism indices used for evaluation. Additionally, the impact of TAC dose reduction or discontinuation on glucose metabolism was assessed, along with pharmacological agents that modulate TAC-induced diabetes, including anti-diabetic medications, anti-inflammatory and antioxidant compounds, biologics, and antibiotics. Key signaling pathways implicated in TAC-induced diabetes include CaN/NFAT, PI3K/AKT/mTOR, and TGF-β/Smad, all of which impair islet β-cell function, thereby contributing to diabetes development. This review provides a concise summary of the characteristics of relevant murine models, offering valuable guidance for selecting appropriate and economical animal models for future research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pharmacological Reports
Pharmacological Reports 医学-药学
CiteScore
8.40
自引率
0.00%
发文量
91
审稿时长
6 months
期刊介绍: Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures. Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology. Studies of plant extracts are not suitable for Pharmacological Reports.
期刊最新文献
Effects of COVID-19 and medication used for treatment and symptom prevention on the antioxidant status. Off-label use of anlotinib in malignancies' treatment: efficacy and management of adverse reactions. A hydrogen sulphide-releasing non-steroidal anti-inflammatory, ATB-346, significantly attenuates human myometrial contractions. A comprehensive update on the potential of curcumin to enhance chemosensitivity in colorectal cancer. c-Myc inhibition and p21 modulation contribute to unsymmetrical bisacridines-induced apoptosis and senescence in pancreatic cancer cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1