晶体级定时校准使用级联光子60co点源为长轴动物PET系统。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-01-29 DOI:10.1088/1361-6560/adabaf
Qing Wei, Daowu Li, Xianchao Huang, Long Wei, Zhiming Zhang, Xiaorou Han, Yingjie Wang
{"title":"晶体级定时校准使用级联光子60co点源为长轴动物PET系统。","authors":"Qing Wei, Daowu Li, Xianchao Huang, Long Wei, Zhiming Zhang, Xiaorou Han, Yingjie Wang","doi":"10.1088/1361-6560/adabaf","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response. To overcome this limitation, this study proposes a timing calibration method utilising a<sup>60</sup>Co point source.<i>Approach.</i>The<sup>60</sup>Co source emits cascaded photons without angular correlation, allowing the collection of coincidence events throughout the field of view (FOV) with a single<sup>60</sup>Co point source positioned at the centre of the FOV to determine the timing offsets of the pixels. Leveraging the properties of<sup>60</sup>Co, we propose a calibration method and implement it on a long axial animal PET system. Initially, we calibrated the timing offsets of the pixels within two blocks to establish reference detectors, and subsequently employed a<sup>60</sup>Co point source to determine the timing offsets of all the pixels in the system relative to these reference detectors. In addition, we evaluated the system's timing resolution before and after the calibration to validate the efficacy of the proposed method.<i>Main results.</i>We measured the timing offsets of the pixels across the entire system, ranging from -5.0 to 2.0 ns. After implementing the timing offset lookup table, the system timing resolution was improved from 6.30 ns before calibration to 1.04 ns.<i>Significance</i>. In this study, the<sup>60</sup>Co source is employed for timing calibration, offering the advantages of operational simplicity, broad applicability, and potential application in time-of-flight PET.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal-level timing calibration using cascaded photons of<sup>60</sup>Co point source for long axial animal PET system.\",\"authors\":\"Qing Wei, Daowu Li, Xianchao Huang, Long Wei, Zhiming Zhang, Xiaorou Han, Yingjie Wang\",\"doi\":\"10.1088/1361-6560/adabaf\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response. To overcome this limitation, this study proposes a timing calibration method utilising a<sup>60</sup>Co point source.<i>Approach.</i>The<sup>60</sup>Co source emits cascaded photons without angular correlation, allowing the collection of coincidence events throughout the field of view (FOV) with a single<sup>60</sup>Co point source positioned at the centre of the FOV to determine the timing offsets of the pixels. Leveraging the properties of<sup>60</sup>Co, we propose a calibration method and implement it on a long axial animal PET system. Initially, we calibrated the timing offsets of the pixels within two blocks to establish reference detectors, and subsequently employed a<sup>60</sup>Co point source to determine the timing offsets of all the pixels in the system relative to these reference detectors. In addition, we evaluated the system's timing resolution before and after the calibration to validate the efficacy of the proposed method.<i>Main results.</i>We measured the timing offsets of the pixels across the entire system, ranging from -5.0 to 2.0 ns. After implementing the timing offset lookup table, the system timing resolution was improved from 6.30 ns before calibration to 1.04 ns.<i>Significance</i>. In this study, the<sup>60</sup>Co source is employed for timing calibration, offering the advantages of operational simplicity, broad applicability, and potential application in time-of-flight PET.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/adabaf\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adabaf","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:正电子发射断层扫描(PET)系统的定时校正是提高正电子发射断层扫描(PET)系统定时分辨率以改善图像质量的关键。传统上,正电子源用于定时校准。然而,这些源发射的光子以相反的方向传播,这就需要正电子在多个位置湮灭,以便在更多的响应线(LORs)上收集巧合数据。为了克服这一限制,本研究提出了一种利用a60Co点源的定时校准方法。方法:60co源发射级联光子,没有角度相关性,允许在视场(FOV)中收集巧合事件,单个60co点源位于FOV的中心,以确定像素的时间偏移。利用60co的特性,提出了一种校准方法,并在长轴动物PET系统上实现。首先,我们校准了两个块内像素的时间偏移来建立参考检测器,随后使用60co点源来确定系统中所有像素相对于这些参考检测器的时间偏移。此外,我们在校准前后评估了系统的时序分辨率,以验证所提出方法的有效性。主要结果:我们测量了整个系统中像素的时间偏移,范围从-5.0到2.0 ns。在实现时序偏移查找表后,系统的时序分辨率从校准前的6.30 ns提高到1.04 ns。意义:本研究采用60co源进行时序校准,具有操作简单、适用性广等优点,在TOF (time-of-flight) PET中具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystal-level timing calibration using cascaded photons of60Co point source for long axial animal PET system.

Objective.Timing calibration is essential for positron emission tomography (PET) system as it enhances timing resolution to improve image quality. Traditionally, positron sources are employed for timing calibration. However, the photons emitted by these sources travel in opposite directions, necessitating that positrons annihilate at multiple locations to collect coincidence data across a greater number of lines of response. To overcome this limitation, this study proposes a timing calibration method utilising a60Co point source.Approach.The60Co source emits cascaded photons without angular correlation, allowing the collection of coincidence events throughout the field of view (FOV) with a single60Co point source positioned at the centre of the FOV to determine the timing offsets of the pixels. Leveraging the properties of60Co, we propose a calibration method and implement it on a long axial animal PET system. Initially, we calibrated the timing offsets of the pixels within two blocks to establish reference detectors, and subsequently employed a60Co point source to determine the timing offsets of all the pixels in the system relative to these reference detectors. In addition, we evaluated the system's timing resolution before and after the calibration to validate the efficacy of the proposed method.Main results.We measured the timing offsets of the pixels across the entire system, ranging from -5.0 to 2.0 ns. After implementing the timing offset lookup table, the system timing resolution was improved from 6.30 ns before calibration to 1.04 ns.Significance. In this study, the60Co source is employed for timing calibration, offering the advantages of operational simplicity, broad applicability, and potential application in time-of-flight PET.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1