具有紧凑先验的低剂量PET重建扩散变压器模型。

IF 3.3 3区 医学 Q2 ENGINEERING, BIOMEDICAL Physics in medicine and biology Pub Date : 2025-02-07 DOI:10.1088/1361-6560/adac25
Bin Huang, Xubiao Liu, Lei Fang, Qiegen Liu, Bingxuan Li
{"title":"具有紧凑先验的低剂量PET重建扩散变压器模型。","authors":"Bin Huang, Xubiao Liu, Lei Fang, Qiegen Liu, Bingxuan Li","doi":"10.1088/1361-6560/adac25","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes.<i>Approach.</i>In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion model with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and alternating direction method of multipliers enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks.<i>Main results</i>. Experimental results validate the effectiveness of DTM in reconstructing low-dose PET image quality. DTM achieves state-of-the-art performance across various metrics, including PSNR, SSIM, NRMSE, CR, and COV, demonstrating its ability to reduce noise while preserving critical clinical details such as lesion structure and texture. Compared with baseline methods, DTM delivers best results in denoising and lesion preservation across various low-dose levels, including 10%, 25%, 50%, and even ultra-low-dose level such as 1%. DTM shows robust generalization performance on phantom and patient datasets, highlighting its adaptability to varying imaging conditions.<i>Significance</i>. This approach reduces radiation exposure while ensuring reliable imaging for early disease detection and clinical decision-making, offering a promising tool for both clinical and research applications.</p>","PeriodicalId":20185,"journal":{"name":"Physics in medicine and biology","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diffusion transformer model with compact prior for low-dose PET reconstruction.\",\"authors\":\"Bin Huang, Xubiao Liu, Lei Fang, Qiegen Liu, Bingxuan Li\",\"doi\":\"10.1088/1361-6560/adac25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Objective.</i>Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes.<i>Approach.</i>In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion model with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and alternating direction method of multipliers enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks.<i>Main results</i>. Experimental results validate the effectiveness of DTM in reconstructing low-dose PET image quality. DTM achieves state-of-the-art performance across various metrics, including PSNR, SSIM, NRMSE, CR, and COV, demonstrating its ability to reduce noise while preserving critical clinical details such as lesion structure and texture. Compared with baseline methods, DTM delivers best results in denoising and lesion preservation across various low-dose levels, including 10%, 25%, 50%, and even ultra-low-dose level such as 1%. DTM shows robust generalization performance on phantom and patient datasets, highlighting its adaptability to varying imaging conditions.<i>Significance</i>. This approach reduces radiation exposure while ensuring reliable imaging for early disease detection and clinical decision-making, offering a promising tool for both clinical and research applications.</p>\",\"PeriodicalId\":20185,\"journal\":{\"name\":\"Physics in medicine and biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics in medicine and biology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6560/adac25\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics in medicine and biology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1361-6560/adac25","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

正电子发射断层扫描(PET)是一种先进的医学成像技术,在无创临床诊断中起着至关重要的作用。然而,虽然通过低剂量PET扫描减少辐射暴露有利于患者安全,但往往导致统计数据不足。这种数据的稀缺性对准确重建高质量图像构成了重大挑战,而高质量图像对于可靠的诊断结果至关重要。为了提高低剂量PET成像的重建质量,我们提出了一种由关节紧凑先验(JCP)引导的扩散变压器模型(DTM)。根据目前的研究成果,我们提出了一个开创性的PET重建模型,该模型集成了扩散和变压器模型,用于关节优化。该模型结合了扩散模型强大的分布映射能力和变压器捕获远程依赖关系的能力,为低剂量PET重建提供了显着优势。此外,结合病灶细化块和乘数交替方向法(ADMM),增强了病灶区域的恢复能力,并保留了细节信息,解决了大多数深度学习框架中病灶区域和纹理细节的模糊问题。实验结果证明了DTM在提高低剂量PET扫描图像质量和保留关键临床信息方面的有效性。我们的方法不仅降低了辐射暴露风险,而且为早期疾病检测和患者管理提供了更可靠的PET成像工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Diffusion transformer model with compact prior for low-dose PET reconstruction.

Objective.Positron emission tomography (PET) is an advanced medical imaging technique that plays a crucial role in non-invasive clinical diagnosis. However, while reducing radiation exposure through low-dose PET scans is beneficial for patient safety, it often results in insufficient statistical data. This scarcity of data poses significant challenges for accurately reconstructing high-quality images, which are essential for reliable diagnostic outcomes.Approach.In this research, we propose a diffusion transformer model (DTM) guided by joint compact prior to enhance the reconstruction quality of low-dose PET imaging. In light of current research findings, we present a pioneering PET reconstruction model that integrates diffusion and transformer models for joint optimization. This model combines the powerful distribution mapping abilities of diffusion model with the capacity of transformers to capture long-range dependencies, offering significant advantages for low-dose PET reconstruction. Additionally, the incorporation of the lesion refining block and alternating direction method of multipliers enhance the recovery capability of lesion regions and preserves detail information, solving blurring problems in lesion areas and texture details of most deep learning frameworks.Main results. Experimental results validate the effectiveness of DTM in reconstructing low-dose PET image quality. DTM achieves state-of-the-art performance across various metrics, including PSNR, SSIM, NRMSE, CR, and COV, demonstrating its ability to reduce noise while preserving critical clinical details such as lesion structure and texture. Compared with baseline methods, DTM delivers best results in denoising and lesion preservation across various low-dose levels, including 10%, 25%, 50%, and even ultra-low-dose level such as 1%. DTM shows robust generalization performance on phantom and patient datasets, highlighting its adaptability to varying imaging conditions.Significance. This approach reduces radiation exposure while ensuring reliable imaging for early disease detection and clinical decision-making, offering a promising tool for both clinical and research applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics in medicine and biology
Physics in medicine and biology 医学-工程:生物医学
CiteScore
6.50
自引率
14.30%
发文量
409
审稿时长
2 months
期刊介绍: The development and application of theoretical, computational and experimental physics to medicine, physiology and biology. Topics covered are: therapy physics (including ionizing and non-ionizing radiation); biomedical imaging (e.g. x-ray, magnetic resonance, ultrasound, optical and nuclear imaging); image-guided interventions; image reconstruction and analysis (including kinetic modelling); artificial intelligence in biomedical physics and analysis; nanoparticles in imaging and therapy; radiobiology; radiation protection and patient dose monitoring; radiation dosimetry
期刊最新文献
Initial results of the Hyperion IIDPET insert for simultaneous PET-MRI applied to atherosclerotic plaque imaging in New-Zealand white rabbits. A multiplexing method based on multidimensional readout method. Diffusion transformer model with compact prior for low-dose PET reconstruction. A dual-domain network with division residual connection and feature fusion for CBCT scatter correction. A ConvLSTM-based model for predicting thermal damage during laser interstitial thermal therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1