Ting Lu , Ying Huang , Jiehong Yang , Chongyu Shao , Haitong Wan
{"title":"养阴益气活血汤通过调节Wnt信号通路改善小胶质细胞对cis诱导的神经炎症损伤的激活机制。","authors":"Ting Lu , Ying Huang , Jiehong Yang , Chongyu Shao , Haitong Wan","doi":"10.1016/j.phymed.2025.156387","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ischemic stroke is a predominant cause of neurological disability, characterized by neuroinflammation and neuronal apoptosis. The Wnt signaling pathway plays a critical role in brain repair. Yangyin Yiqi Huoxue Decoction, a traditional Chinese herbal formula, has shown potential in alleviating neuroinflammatory injury, yet, the precise mechanism underlying its effects remains unclear.</div></div><div><h3>Purpose</h3><div>This study aims to explore the therapeutic efficacy of Yangyin Yiqi Huoxue Decoction on ischemic stroke and its potential mechanism of action, particularly focusing on its modulation of the Wnt signaling pathway and impact on neuroinflammation and neural stem cells activity.</div></div><div><h3>Study Design and Methods</h3><div>The middle cerebral artery occlusion (MCAO) rat model and an Oxygen glucose deprivation/re-oxygenation (OGD/R) cell model were employed. In vivo experiments were conducted to investigate the therapeutic effects of the Yangyin Yiqi Huoxue Decoction at high, medium, and low dosages (3.3, 1.65, and 0.83 g/kg). The effects of Yangyin Yiqi Huoxue Decoction on neuroinflammatory cytokine levels, microglial activation, and neural stem cells proliferation and differentiation were assessed in vivo experiments. Wnt signaling components were evaluated through Quantitative Real-Time PCR and Western blot in both vivo and vitro. Additionaly, the Wnt inhibitor Dickkopf-related protein 1(DKK1) was used to confirm the pathway's involvement.</div></div><div><h3>Results</h3><div>The high-dose group(3.3 g/kg) of the Yangyin Yiqi Huoxue Decoction exhibited the most pronounced therapeutic effects. Yangyin Yiqi Huoxue Decoction significantly reduced pro-inflammatory cytokine levels, inhibited microglial overactivation, and enhanced neural stem cells proliferation and differentiation. It also modulated the Wnt pathway by upregulating Wnt Family Member 3A(Wnt3a) and β-catenin, while downregulating Wnt Family Member 5A(Wnt5a) and glycogen synthase kinase-3β(GSK-3β). The inhibition of Wnt signaling by Dickkopf-related protein 1(DKK1) reversed these beneficial effects, confirming Yangyin Yiqi Huoxue Decoction 's mechanism.</div></div><div><h3>Conclusions</h3><div>Yangyin Yiqi Huoxue Decoction exerts neuroprotective effects by suppressing neuroinflammation and promoting neural-stem-cell-mediated brain repair through the Wnt signaling pathway, positioning it as a potential candidate for ischemic stroke treatment.</div></div>","PeriodicalId":20212,"journal":{"name":"Phytomedicine","volume":"138 ","pages":"Article 156387"},"PeriodicalIF":6.7000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yangyin Yiqi Huoxue Decoction improves the mechanism of microglia activation against CIS-induced neuroinflammatory injury by regulating the Wnt signaling pathway\",\"authors\":\"Ting Lu , Ying Huang , Jiehong Yang , Chongyu Shao , Haitong Wan\",\"doi\":\"10.1016/j.phymed.2025.156387\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Ischemic stroke is a predominant cause of neurological disability, characterized by neuroinflammation and neuronal apoptosis. The Wnt signaling pathway plays a critical role in brain repair. Yangyin Yiqi Huoxue Decoction, a traditional Chinese herbal formula, has shown potential in alleviating neuroinflammatory injury, yet, the precise mechanism underlying its effects remains unclear.</div></div><div><h3>Purpose</h3><div>This study aims to explore the therapeutic efficacy of Yangyin Yiqi Huoxue Decoction on ischemic stroke and its potential mechanism of action, particularly focusing on its modulation of the Wnt signaling pathway and impact on neuroinflammation and neural stem cells activity.</div></div><div><h3>Study Design and Methods</h3><div>The middle cerebral artery occlusion (MCAO) rat model and an Oxygen glucose deprivation/re-oxygenation (OGD/R) cell model were employed. In vivo experiments were conducted to investigate the therapeutic effects of the Yangyin Yiqi Huoxue Decoction at high, medium, and low dosages (3.3, 1.65, and 0.83 g/kg). The effects of Yangyin Yiqi Huoxue Decoction on neuroinflammatory cytokine levels, microglial activation, and neural stem cells proliferation and differentiation were assessed in vivo experiments. Wnt signaling components were evaluated through Quantitative Real-Time PCR and Western blot in both vivo and vitro. Additionaly, the Wnt inhibitor Dickkopf-related protein 1(DKK1) was used to confirm the pathway's involvement.</div></div><div><h3>Results</h3><div>The high-dose group(3.3 g/kg) of the Yangyin Yiqi Huoxue Decoction exhibited the most pronounced therapeutic effects. Yangyin Yiqi Huoxue Decoction significantly reduced pro-inflammatory cytokine levels, inhibited microglial overactivation, and enhanced neural stem cells proliferation and differentiation. It also modulated the Wnt pathway by upregulating Wnt Family Member 3A(Wnt3a) and β-catenin, while downregulating Wnt Family Member 5A(Wnt5a) and glycogen synthase kinase-3β(GSK-3β). The inhibition of Wnt signaling by Dickkopf-related protein 1(DKK1) reversed these beneficial effects, confirming Yangyin Yiqi Huoxue Decoction 's mechanism.</div></div><div><h3>Conclusions</h3><div>Yangyin Yiqi Huoxue Decoction exerts neuroprotective effects by suppressing neuroinflammation and promoting neural-stem-cell-mediated brain repair through the Wnt signaling pathway, positioning it as a potential candidate for ischemic stroke treatment.</div></div>\",\"PeriodicalId\":20212,\"journal\":{\"name\":\"Phytomedicine\",\"volume\":\"138 \",\"pages\":\"Article 156387\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-01-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Phytomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0944711325000261\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytomedicine","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0944711325000261","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Yangyin Yiqi Huoxue Decoction improves the mechanism of microglia activation against CIS-induced neuroinflammatory injury by regulating the Wnt signaling pathway
Background
Ischemic stroke is a predominant cause of neurological disability, characterized by neuroinflammation and neuronal apoptosis. The Wnt signaling pathway plays a critical role in brain repair. Yangyin Yiqi Huoxue Decoction, a traditional Chinese herbal formula, has shown potential in alleviating neuroinflammatory injury, yet, the precise mechanism underlying its effects remains unclear.
Purpose
This study aims to explore the therapeutic efficacy of Yangyin Yiqi Huoxue Decoction on ischemic stroke and its potential mechanism of action, particularly focusing on its modulation of the Wnt signaling pathway and impact on neuroinflammation and neural stem cells activity.
Study Design and Methods
The middle cerebral artery occlusion (MCAO) rat model and an Oxygen glucose deprivation/re-oxygenation (OGD/R) cell model were employed. In vivo experiments were conducted to investigate the therapeutic effects of the Yangyin Yiqi Huoxue Decoction at high, medium, and low dosages (3.3, 1.65, and 0.83 g/kg). The effects of Yangyin Yiqi Huoxue Decoction on neuroinflammatory cytokine levels, microglial activation, and neural stem cells proliferation and differentiation were assessed in vivo experiments. Wnt signaling components were evaluated through Quantitative Real-Time PCR and Western blot in both vivo and vitro. Additionaly, the Wnt inhibitor Dickkopf-related protein 1(DKK1) was used to confirm the pathway's involvement.
Results
The high-dose group(3.3 g/kg) of the Yangyin Yiqi Huoxue Decoction exhibited the most pronounced therapeutic effects. Yangyin Yiqi Huoxue Decoction significantly reduced pro-inflammatory cytokine levels, inhibited microglial overactivation, and enhanced neural stem cells proliferation and differentiation. It also modulated the Wnt pathway by upregulating Wnt Family Member 3A(Wnt3a) and β-catenin, while downregulating Wnt Family Member 5A(Wnt5a) and glycogen synthase kinase-3β(GSK-3β). The inhibition of Wnt signaling by Dickkopf-related protein 1(DKK1) reversed these beneficial effects, confirming Yangyin Yiqi Huoxue Decoction 's mechanism.
Conclusions
Yangyin Yiqi Huoxue Decoction exerts neuroprotective effects by suppressing neuroinflammation and promoting neural-stem-cell-mediated brain repair through the Wnt signaling pathway, positioning it as a potential candidate for ischemic stroke treatment.
期刊介绍:
Phytomedicine is a therapy-oriented journal that publishes innovative studies on the efficacy, safety, quality, and mechanisms of action of specified plant extracts, phytopharmaceuticals, and their isolated constituents. This includes clinical, pharmacological, pharmacokinetic, and toxicological studies of herbal medicinal products, preparations, and purified compounds with defined and consistent quality, ensuring reproducible pharmacological activity. Founded in 1994, Phytomedicine aims to focus and stimulate research in this field and establish internationally accepted scientific standards for pharmacological studies, proof of clinical efficacy, and safety of phytomedicines.