{"title":"登革病毒劫持纤溶酶原:纤溶酶原的kringle-4和-5结构域与包膜蛋白的结构域I协同结合。","authors":"Yee Jun Yuen, Thekkoot Sabitha, Lim Jian Li, Varsha Ashok Walvekar, Karthik Ramesh, R Manjunatha Kini, J Sivaraman, Yu Keung Mok","doi":"10.1002/pro.70035","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus. However, the domains together lead to a synergistic effect, with both kringle-4 and -5 domains required and sufficient for binding. Site-directed mutagenesis experiments showed that the N-terminal and C-terminal aspartic acid residues in the \"DXD\" acidic motifs of the kringle-4 and -5 domains likely have different roles when engaged with DENV. Hydrogen deuterium exchange mass spectrometry experiments on the plasmin:DENV complex led to the identification of two Lys-containing regions on domain I of the E-protein of DENV that are buried by plasmin and could be potential plasmin binding sites. These findings contradict with published literature that domain III of the DENV E-protein interacts with the kringle-1-3 domains of plasmin. We provide a plausible explanation for the observed discrepancies.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70035"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751865/pdf/","citationCount":"0","resultStr":"{\"title\":\"Hijacking of plasminogen by dengue virus: The kringle-4 and -5 domains of plasminogen binds synergistically to the domain I of envelope protein.\",\"authors\":\"Yee Jun Yuen, Thekkoot Sabitha, Lim Jian Li, Varsha Ashok Walvekar, Karthik Ramesh, R Manjunatha Kini, J Sivaraman, Yu Keung Mok\",\"doi\":\"10.1002/pro.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus. However, the domains together lead to a synergistic effect, with both kringle-4 and -5 domains required and sufficient for binding. Site-directed mutagenesis experiments showed that the N-terminal and C-terminal aspartic acid residues in the \\\"DXD\\\" acidic motifs of the kringle-4 and -5 domains likely have different roles when engaged with DENV. Hydrogen deuterium exchange mass spectrometry experiments on the plasmin:DENV complex led to the identification of two Lys-containing regions on domain I of the E-protein of DENV that are buried by plasmin and could be potential plasmin binding sites. These findings contradict with published literature that domain III of the DENV E-protein interacts with the kringle-1-3 domains of plasmin. We provide a plausible explanation for the observed discrepancies.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 2\",\"pages\":\"e70035\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751865/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70035\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70035","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Hijacking of plasminogen by dengue virus: The kringle-4 and -5 domains of plasminogen binds synergistically to the domain I of envelope protein.
Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus. However, the domains together lead to a synergistic effect, with both kringle-4 and -5 domains required and sufficient for binding. Site-directed mutagenesis experiments showed that the N-terminal and C-terminal aspartic acid residues in the "DXD" acidic motifs of the kringle-4 and -5 domains likely have different roles when engaged with DENV. Hydrogen deuterium exchange mass spectrometry experiments on the plasmin:DENV complex led to the identification of two Lys-containing regions on domain I of the E-protein of DENV that are buried by plasmin and could be potential plasmin binding sites. These findings contradict with published literature that domain III of the DENV E-protein interacts with the kringle-1-3 domains of plasmin. We provide a plausible explanation for the observed discrepancies.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).