Nicoll Zeballos, Irene Ginés-Alcober, Javier Macías-León, Daniel Andrés-Sanz, Andrés Manuel González-Ramírez, Mercedes Sánchez-Costa, Pedro Merino, Ramón Hurtado-Guerrero, Fernando López-Gallego
{"title":"酶的环工程,以控制其固定化和最终制造更有效的多相生物催化剂。","authors":"Nicoll Zeballos, Irene Ginés-Alcober, Javier Macías-León, Daniel Andrés-Sanz, Andrés Manuel González-Ramírez, Mercedes Sánchez-Costa, Pedro Merino, Ramón Hurtado-Guerrero, Fernando López-Gallego","doi":"10.1002/pro.70040","DOIUrl":null,"url":null,"abstract":"<p><p>Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited. Here, we propose a novel approach that tailors the enzyme surface with engineered His-rich loops. To that aim, we first solve the X-ray crystal structure of a hexameric alcohol dehydrogenase from Thermus thermophilus HB27 (TtHBDH) (PDB: 9FBD). Guided by this 3D structure, we engineer the enzyme surface with a new loop enriched with six His residues to control enzyme orientation. Molecular dynamics simulations reveal that the engineered loop's imidazole rings have greater solvent accessibility than those in native His residues, allowing for more efficient enzyme immobilization on certain metal chelate-functionalized carriers. Using carriers functionalized with iron (III)-catechol, the apparent V<sub>max</sub> of the immobilized loop variant doubles the immobilized His-tagged one, and vice versa when both variants are immobilized on carriers functionalized with copper (II)-imidodiacetic acid. His-tagged and loop-engineered TtHBDH show high operational stability reaching 100% bioconversion after 10 reaction cycles, yet the loop variant is faster than the His-tagged one.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70040"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751856/pdf/","citationCount":"0","resultStr":"{\"title\":\"Loop engineering of enzymes to control their immobilization and ultimately fabricate more efficient heterogeneous biocatalysts.\",\"authors\":\"Nicoll Zeballos, Irene Ginés-Alcober, Javier Macías-León, Daniel Andrés-Sanz, Andrés Manuel González-Ramírez, Mercedes Sánchez-Costa, Pedro Merino, Ramón Hurtado-Guerrero, Fernando López-Gallego\",\"doi\":\"10.1002/pro.70040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited. Here, we propose a novel approach that tailors the enzyme surface with engineered His-rich loops. To that aim, we first solve the X-ray crystal structure of a hexameric alcohol dehydrogenase from Thermus thermophilus HB27 (TtHBDH) (PDB: 9FBD). Guided by this 3D structure, we engineer the enzyme surface with a new loop enriched with six His residues to control enzyme orientation. Molecular dynamics simulations reveal that the engineered loop's imidazole rings have greater solvent accessibility than those in native His residues, allowing for more efficient enzyme immobilization on certain metal chelate-functionalized carriers. Using carriers functionalized with iron (III)-catechol, the apparent V<sub>max</sub> of the immobilized loop variant doubles the immobilized His-tagged one, and vice versa when both variants are immobilized on carriers functionalized with copper (II)-imidodiacetic acid. His-tagged and loop-engineered TtHBDH show high operational stability reaching 100% bioconversion after 10 reaction cycles, yet the loop variant is faster than the His-tagged one.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 2\",\"pages\":\"e70040\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751856/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70040\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70040","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Loop engineering of enzymes to control their immobilization and ultimately fabricate more efficient heterogeneous biocatalysts.
Enzyme immobilization is indispensable for enhancing enzyme performance in various industrial applications. Typically, enzymes require specific spatial arrangements for optimal functionality, underscoring the importance of correct orientation. Despite well-known N- or C-terminus tailoring techniques, alternatives for achieving orientation control are limited. Here, we propose a novel approach that tailors the enzyme surface with engineered His-rich loops. To that aim, we first solve the X-ray crystal structure of a hexameric alcohol dehydrogenase from Thermus thermophilus HB27 (TtHBDH) (PDB: 9FBD). Guided by this 3D structure, we engineer the enzyme surface with a new loop enriched with six His residues to control enzyme orientation. Molecular dynamics simulations reveal that the engineered loop's imidazole rings have greater solvent accessibility than those in native His residues, allowing for more efficient enzyme immobilization on certain metal chelate-functionalized carriers. Using carriers functionalized with iron (III)-catechol, the apparent Vmax of the immobilized loop variant doubles the immobilized His-tagged one, and vice versa when both variants are immobilized on carriers functionalized with copper (II)-imidodiacetic acid. His-tagged and loop-engineered TtHBDH show high operational stability reaching 100% bioconversion after 10 reaction cycles, yet the loop variant is faster than the His-tagged one.
期刊介绍:
Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution.
Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics.
The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication.
Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).