XCL1在健康和疾病中的多方面作用。

IF 4.5 3区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Protein Science Pub Date : 2025-02-01 DOI:10.1002/pro.70032
Muhammed Syed, Acacia F Dishman, Brian F Volkman, Tara L Walker
{"title":"XCL1在健康和疾病中的多方面作用。","authors":"Muhammed Syed, Acacia F Dishman, Brian F Volkman, Tara L Walker","doi":"10.1002/pro.70032","DOIUrl":null,"url":null,"abstract":"<p><p>The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions. One XCL1 fold resembles the structure of all other chemokines (chemokine fold), while the other does not (alternate fold). The chemokine fold of XCL1 displays high affinity for the GPCR XCR1, while the alternative fold binds GAGs and exhibits antimicrobial activity. Although the canonical role of XCL1 as a CD8+ dendritic cell chemoattractant was defined more than a decade ago, the misconception that XCL1 is a lymphocyte-specific chemoattractant still prevails in the recent literature. This review aims to highlight the structure-guided functions of XCL1 and reclarify its immunological role. In addition, the implications of this metamorphic chemokine in vaccine development and emerging functions in the nervous system will be explored.</p>","PeriodicalId":20761,"journal":{"name":"Protein Science","volume":"34 2","pages":"e70032"},"PeriodicalIF":4.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751857/pdf/","citationCount":"0","resultStr":"{\"title\":\"The multifaceted role of XCL1 in health and disease.\",\"authors\":\"Muhammed Syed, Acacia F Dishman, Brian F Volkman, Tara L Walker\",\"doi\":\"10.1002/pro.70032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions. One XCL1 fold resembles the structure of all other chemokines (chemokine fold), while the other does not (alternate fold). The chemokine fold of XCL1 displays high affinity for the GPCR XCR1, while the alternative fold binds GAGs and exhibits antimicrobial activity. Although the canonical role of XCL1 as a CD8+ dendritic cell chemoattractant was defined more than a decade ago, the misconception that XCL1 is a lymphocyte-specific chemoattractant still prevails in the recent literature. This review aims to highlight the structure-guided functions of XCL1 and reclarify its immunological role. In addition, the implications of this metamorphic chemokine in vaccine development and emerging functions in the nervous system will be explored.</p>\",\"PeriodicalId\":20761,\"journal\":{\"name\":\"Protein Science\",\"volume\":\"34 2\",\"pages\":\"e70032\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751857/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Protein Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pro.70032\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Protein Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pro.70032","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

趋化因子XC基序趋化因子配体1 (XCL1)是一个由大约50个小的分泌蛋白组成的保守家族的一个异常特殊的成员,这些蛋白以其刺激细胞定向迁移的能力而闻名。所有趋化因子采用非常相似的折叠结构,结合特定的G蛋白偶联受体(GPCR),大多数趋化因子结合细胞外基质糖胺聚糖,通常以二聚体或低聚体形式。部分由于缺乏在所有其他趋化因子中保守的二硫键,XCL1在两个具有不同功能的不同结构之间相互转换。一个XCL1折叠类似于所有其他趋化因子的结构(趋化因子折叠),而另一个则不同(交替折叠)。XCL1的趋化因子折叠对GPCR XCR1显示出高亲和力,而替代折叠结合GAGs并表现出抗菌活性。尽管十多年前就确定了XCL1作为CD8+树突状细胞化学引诱剂的典型作用,但在最近的文献中,关于XCL1是淋巴细胞特异性化学引诱剂的误解仍然盛行。本文旨在强调XCL1的结构导向功能,并重新阐明其免疫学作用。此外,将探讨这种变质趋化因子在疫苗开发和神经系统中新出现的功能中的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The multifaceted role of XCL1 in health and disease.

The chemokine XC motif chemokine ligand 1 (XCL1) is an unusually specialized member of a conserved family of around 50 small, secreted proteins that are best known for their ability to stimulate the directional migration of cells. All chemokines adopt a very similar folded structure that binds a specific G protein-coupled receptor (GPCR), and most chemokines bind extracellular matrix glycosaminoglycans, often in a dimeric or oligomeric form. Owing in part to the lack of a disulfide bond that is conserved in all other chemokines, XCL1 interconverts between two distinct structures with distinct functions. One XCL1 fold resembles the structure of all other chemokines (chemokine fold), while the other does not (alternate fold). The chemokine fold of XCL1 displays high affinity for the GPCR XCR1, while the alternative fold binds GAGs and exhibits antimicrobial activity. Although the canonical role of XCL1 as a CD8+ dendritic cell chemoattractant was defined more than a decade ago, the misconception that XCL1 is a lymphocyte-specific chemoattractant still prevails in the recent literature. This review aims to highlight the structure-guided functions of XCL1 and reclarify its immunological role. In addition, the implications of this metamorphic chemokine in vaccine development and emerging functions in the nervous system will be explored.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Protein Science
Protein Science 生物-生化与分子生物学
CiteScore
12.40
自引率
1.20%
发文量
246
审稿时长
1 months
期刊介绍: Protein Science, the flagship journal of The Protein Society, is a publication that focuses on advancing fundamental knowledge in the field of protein molecules. The journal welcomes original reports and review articles that contribute to our understanding of protein function, structure, folding, design, and evolution. Additionally, Protein Science encourages papers that explore the applications of protein science in various areas such as therapeutics, protein-based biomaterials, bionanotechnology, synthetic biology, and bioelectronics. The journal accepts manuscript submissions in any suitable format for review, with the requirement of converting the manuscript to journal-style format only upon acceptance for publication. Protein Science is indexed and abstracted in numerous databases, including the Agricultural & Environmental Science Database (ProQuest), Biological Science Database (ProQuest), CAS: Chemical Abstracts Service (ACS), Embase (Elsevier), Health & Medical Collection (ProQuest), Health Research Premium Collection (ProQuest), Materials Science & Engineering Database (ProQuest), MEDLINE/PubMed (NLM), Natural Science Collection (ProQuest), and SciTech Premium Collection (ProQuest).
期刊最新文献
A functional helix shuffled variant of the B domain of Staphylococcus aureus. AFFIPred: AlphaFold2 structure-based Functional Impact Prediction of missense variations. AggNet: Advancing protein aggregation analysis through deep learning and protein language model. Allosteric modulation of NF1 GAP: Differential distributions of catalytically competent populations in loss-of-function and gain-of-function mutants. Citrullination at the N-terminal region of MDM2 by the PADI4 enzyme.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1