{"title":"基于深度学习AI和时间事件定位分析的指尖家庭睡眠呼吸暂停测试系统的验证。","authors":"Ke-Wei Chen, Chun-Hsien Tseng, Hsin-Chien Lee, Wen-Te Liu, Kun-Ta Chou, Hau-Tieng Wu","doi":"10.1093/sleep/zsae317","DOIUrl":null,"url":null,"abstract":"<p><strong>Study objectives: </strong>This paper validates TipTraQ, a compact home sleep apnea testing (HSAT) system. TipTraQ comprises a fingertip-worn device, a mobile application, and a cloud-based deep learning artificial intelligence (AI) system. The device utilizes PPG (red, infrared, and green channels) and accelerometer sensors to assess sleep apnea by the AI system.</p><p><strong>Methods: </strong>We prospectively enrolled 240 participants suspected of obstructive sleep apnea (OSA) at a tertiary medical center for internal validation and 112 participants independently at another center for external validation. All participants underwent simultaneous polysomnography (PSG) and TripTraQ HSAT. We compared TipTraQ-derived total sleep time (TQ-TST) and TipTraQ-derived Respiratory Events Index (TQ-REI) with expert-determined total sleep time (TST) and apnea-hypopnea index (AHI), based on AASM standards with the 1B hypopnea rule. Temporal event localization analysis for respiratory event prediction was conducted at both event and hourly levels.</p><p><strong>Results: </strong>In the external validation, the Spearman correlation coefficients for TQ-TST vs. TST and TQ-REI vs. AHI were 0.81 and 0.95. respectively. The root mean square error were 0.53 hours for TQ-TST vs. TST and 7.53 events/hour for TQ-REI vs. AHI. For apnea/hypopnea prediction with a 10s grace period, the true positive, false positive and false negative rates in temporal event localization analysis were 0.76, 0.24, and 0.23, respectively. The four-way OSA severity classification achieved a Cohen's kappa of 0.7.</p><p><strong>Conclusions: </strong>TQ-TST and TQ-REI predict TST and AHI with comparable performance to existing devices of the same type, and respiratory event prediction is validated through temporal event localization analysis.</p>","PeriodicalId":22018,"journal":{"name":"Sleep","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validation of a Fingertip Home Sleep Apnea Testing System Using Deep Learning AI and a Temporal Event Localization Analysis.\",\"authors\":\"Ke-Wei Chen, Chun-Hsien Tseng, Hsin-Chien Lee, Wen-Te Liu, Kun-Ta Chou, Hau-Tieng Wu\",\"doi\":\"10.1093/sleep/zsae317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Study objectives: </strong>This paper validates TipTraQ, a compact home sleep apnea testing (HSAT) system. TipTraQ comprises a fingertip-worn device, a mobile application, and a cloud-based deep learning artificial intelligence (AI) system. The device utilizes PPG (red, infrared, and green channels) and accelerometer sensors to assess sleep apnea by the AI system.</p><p><strong>Methods: </strong>We prospectively enrolled 240 participants suspected of obstructive sleep apnea (OSA) at a tertiary medical center for internal validation and 112 participants independently at another center for external validation. All participants underwent simultaneous polysomnography (PSG) and TripTraQ HSAT. We compared TipTraQ-derived total sleep time (TQ-TST) and TipTraQ-derived Respiratory Events Index (TQ-REI) with expert-determined total sleep time (TST) and apnea-hypopnea index (AHI), based on AASM standards with the 1B hypopnea rule. Temporal event localization analysis for respiratory event prediction was conducted at both event and hourly levels.</p><p><strong>Results: </strong>In the external validation, the Spearman correlation coefficients for TQ-TST vs. TST and TQ-REI vs. AHI were 0.81 and 0.95. respectively. The root mean square error were 0.53 hours for TQ-TST vs. TST and 7.53 events/hour for TQ-REI vs. AHI. For apnea/hypopnea prediction with a 10s grace period, the true positive, false positive and false negative rates in temporal event localization analysis were 0.76, 0.24, and 0.23, respectively. The four-way OSA severity classification achieved a Cohen's kappa of 0.7.</p><p><strong>Conclusions: </strong>TQ-TST and TQ-REI predict TST and AHI with comparable performance to existing devices of the same type, and respiratory event prediction is validated through temporal event localization analysis.</p>\",\"PeriodicalId\":22018,\"journal\":{\"name\":\"Sleep\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sleep\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/sleep/zsae317\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sleep","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/sleep/zsae317","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
Validation of a Fingertip Home Sleep Apnea Testing System Using Deep Learning AI and a Temporal Event Localization Analysis.
Study objectives: This paper validates TipTraQ, a compact home sleep apnea testing (HSAT) system. TipTraQ comprises a fingertip-worn device, a mobile application, and a cloud-based deep learning artificial intelligence (AI) system. The device utilizes PPG (red, infrared, and green channels) and accelerometer sensors to assess sleep apnea by the AI system.
Methods: We prospectively enrolled 240 participants suspected of obstructive sleep apnea (OSA) at a tertiary medical center for internal validation and 112 participants independently at another center for external validation. All participants underwent simultaneous polysomnography (PSG) and TripTraQ HSAT. We compared TipTraQ-derived total sleep time (TQ-TST) and TipTraQ-derived Respiratory Events Index (TQ-REI) with expert-determined total sleep time (TST) and apnea-hypopnea index (AHI), based on AASM standards with the 1B hypopnea rule. Temporal event localization analysis for respiratory event prediction was conducted at both event and hourly levels.
Results: In the external validation, the Spearman correlation coefficients for TQ-TST vs. TST and TQ-REI vs. AHI were 0.81 and 0.95. respectively. The root mean square error were 0.53 hours for TQ-TST vs. TST and 7.53 events/hour for TQ-REI vs. AHI. For apnea/hypopnea prediction with a 10s grace period, the true positive, false positive and false negative rates in temporal event localization analysis were 0.76, 0.24, and 0.23, respectively. The four-way OSA severity classification achieved a Cohen's kappa of 0.7.
Conclusions: TQ-TST and TQ-REI predict TST and AHI with comparable performance to existing devices of the same type, and respiratory event prediction is validated through temporal event localization analysis.
期刊介绍:
SLEEP® publishes findings from studies conducted at any level of analysis, including:
Genes
Molecules
Cells
Physiology
Neural systems and circuits
Behavior and cognition
Self-report
SLEEP® publishes articles that use a wide variety of scientific approaches and address a broad range of topics. These may include, but are not limited to:
Basic and neuroscience studies of sleep and circadian mechanisms
In vitro and animal models of sleep, circadian rhythms, and human disorders
Pre-clinical human investigations, including the measurement and manipulation of sleep and circadian rhythms
Studies in clinical or population samples. These may address factors influencing sleep and circadian rhythms (e.g., development and aging, and social and environmental influences) and relationships between sleep, circadian rhythms, health, and disease
Clinical trials, epidemiology studies, implementation, and dissemination research.