Shekh M Rahman, Robert M Geiger, Md Shadiqur Rashid Roni, Isra Tariq, Omnia Ismaiel, Murali K Matta, Katherine Shea, Dylan Bruckner, Wenlei Jiang, Ross Walenga, Bryan Newman, Paula L Hyland, Alexandre J S Ribeiro, Jeffrey Florian, Ksenia Blinova, Kevin A Ford
{"title":"用于评估吸入药物通透性的人体肺气道三维模型。","authors":"Shekh M Rahman, Robert M Geiger, Md Shadiqur Rashid Roni, Isra Tariq, Omnia Ismaiel, Murali K Matta, Katherine Shea, Dylan Bruckner, Wenlei Jiang, Ross Walenga, Bryan Newman, Paula L Hyland, Alexandre J S Ribeiro, Jeffrey Florian, Ksenia Blinova, Kevin A Ford","doi":"10.1021/acsptsci.4c00607","DOIUrl":null,"url":null,"abstract":"<p><p>Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability. To understand how the characterized ALI quality attributes influenced the absorption of inhaled drugs through the epithelial-endothelial barrier, we measured the permeability and epithelial intracellular concentrations of albuterol sulfate (AL), formoterol fumarate (FO), and fluticasone furoate (FL). The presented characterization results overall demonstrate that this culture platform mimicked the airway-specific structure and barrier function. An apparent permeability (<i>P</i> <sub>app</sub>) of 5.7 × 10<sup>-6</sup> cm/s and an intracellular concentration below 1% were quantified for AL over 3 h. The <i>P</i> <sub>app</sub> of FO was 8.5 × 10<sup>-6</sup> cm/s, with an intracellular concentration of 3.8%. Due to its high lipophilicity, FL showed a higher intracellular concentration (17.4%) compared to AL and FO, but also a 73.1% loss of the compound over 3 h due to nonspecific binding, with a <i>P</i> <sub>app</sub> as low as 1.3 × 10<sup>-7</sup> cm/s. While the model exhibited physiologically relevant properties, its utility in estimating the permeability of inhaled drugs may be drug-specific, warranting further optimization and study.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"245-255"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729426/pdf/","citationCount":"0","resultStr":"{\"title\":\"A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.\",\"authors\":\"Shekh M Rahman, Robert M Geiger, Md Shadiqur Rashid Roni, Isra Tariq, Omnia Ismaiel, Murali K Matta, Katherine Shea, Dylan Bruckner, Wenlei Jiang, Ross Walenga, Bryan Newman, Paula L Hyland, Alexandre J S Ribeiro, Jeffrey Florian, Ksenia Blinova, Kevin A Ford\",\"doi\":\"10.1021/acsptsci.4c00607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability. To understand how the characterized ALI quality attributes influenced the absorption of inhaled drugs through the epithelial-endothelial barrier, we measured the permeability and epithelial intracellular concentrations of albuterol sulfate (AL), formoterol fumarate (FO), and fluticasone furoate (FL). The presented characterization results overall demonstrate that this culture platform mimicked the airway-specific structure and barrier function. An apparent permeability (<i>P</i> <sub>app</sub>) of 5.7 × 10<sup>-6</sup> cm/s and an intracellular concentration below 1% were quantified for AL over 3 h. The <i>P</i> <sub>app</sub> of FO was 8.5 × 10<sup>-6</sup> cm/s, with an intracellular concentration of 3.8%. Due to its high lipophilicity, FL showed a higher intracellular concentration (17.4%) compared to AL and FO, but also a 73.1% loss of the compound over 3 h due to nonspecific binding, with a <i>P</i> <sub>app</sub> as low as 1.3 × 10<sup>-7</sup> cm/s. While the model exhibited physiologically relevant properties, its utility in estimating the permeability of inhaled drugs may be drug-specific, warranting further optimization and study.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 1\",\"pages\":\"245-255\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729426/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00607\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00607","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs.
Current in vitro cell-based methods, relying on single cell types, have structural and functional limitations in determining lung drug permeability, which is a contributing factor affecting both local and systemic drug levels. To address this issue, we investigated a 3D human lung airway model generated using a cell culture insert, wherein primary human lung epithelial and endothelial cells were cocultured at an air-liquid interface (ALI). To ensure that the cell culture mimics the physiological and functional characteristics of airway tissue, the model was characterized by evaluating several parameters such as cellular confluency, ciliation, tight junctions, mucus-layer formation, transepithelial electrical resistance, and barrier function through assaying fluorescein isothiocyanate-dextran permeability. To understand how the characterized ALI quality attributes influenced the absorption of inhaled drugs through the epithelial-endothelial barrier, we measured the permeability and epithelial intracellular concentrations of albuterol sulfate (AL), formoterol fumarate (FO), and fluticasone furoate (FL). The presented characterization results overall demonstrate that this culture platform mimicked the airway-specific structure and barrier function. An apparent permeability (Papp) of 5.7 × 10-6 cm/s and an intracellular concentration below 1% were quantified for AL over 3 h. The Papp of FO was 8.5 × 10-6 cm/s, with an intracellular concentration of 3.8%. Due to its high lipophilicity, FL showed a higher intracellular concentration (17.4%) compared to AL and FO, but also a 73.1% loss of the compound over 3 h due to nonspecific binding, with a Papp as low as 1.3 × 10-7 cm/s. While the model exhibited physiologically relevant properties, its utility in estimating the permeability of inhaled drugs may be drug-specific, warranting further optimization and study.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.