Linh T Tran, Katie T Freeman, Mary M Lunzer, Philip S Portoghese, Carrie Haskell-Luevano
{"title":"推荐的阿片受体工具化合物:比较体外受体选择性谱和体内抗伤害性谱。","authors":"Linh T Tran, Katie T Freeman, Mary M Lunzer, Philip S Portoghese, Carrie Haskell-Luevano","doi":"10.1021/acsptsci.4c00604","DOIUrl":null,"url":null,"abstract":"<p><p>Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including <sup>35</sup>S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key \"tool\" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the Gα<sub>Δ6qi4myr</sub> in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same <i>in vivo</i> tail-flick antinociception assays via intrathecal injection for ED<sub>50</sub> potencies. These data provide both <i>in vitro</i> comparative pharmacology as a reference for cellular activities and <i>in vivo</i> antinociception profiles for these tool compounds.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"225-244"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729433/pdf/","citationCount":"0","resultStr":"{\"title\":\"Recommended Opioid Receptor Tool Compounds: Comparative <i>In Vitro</i> for Receptor Selectivity Profiles and <i>In Vivo</i> for Pharmacological Antinociceptive Profiles.\",\"authors\":\"Linh T Tran, Katie T Freeman, Mary M Lunzer, Philip S Portoghese, Carrie Haskell-Luevano\",\"doi\":\"10.1021/acsptsci.4c00604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including <sup>35</sup>S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key \\\"tool\\\" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the Gα<sub>Δ6qi4myr</sub> in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same <i>in vivo</i> tail-flick antinociception assays via intrathecal injection for ED<sub>50</sub> potencies. These data provide both <i>in vitro</i> comparative pharmacology as a reference for cellular activities and <i>in vivo</i> antinociception profiles for these tool compounds.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 1\",\"pages\":\"225-244\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729433/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00604\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles.
Opioid agonist ligands bind opioid receptors and stimulate downstream signaling cascades for various biological processes including pain and reward. Historically, before cloning the receptors, muscle contraction assays using isolated organ tissues were used followed by radiolabel ligand binding assays on native tissues. Upon cloning of the opioid G protein-coupled receptors (GPCRs), cell assays using transfected opioid receptor DNA plasmids became the standard practice including 35S-GTPγS functional and cAMP based assays. A number of research laboratories have studied key "tool" reference opioid receptor ligands for decades and used them as control reference compounds. Some, but not all, of these commonly used tool compounds have been characterized and compared side by side in parallel assays for selectivity profiles at the different human opioid receptors isoforms. Herein, we performed the standard FLIPR calcium mobilization assay using HEK293 cells engineered to stably express the GαΔ6qi4myr in parallel, at human MOR, KOR, DOR, and NOP opioid receptors. The following tool compounds: morphine, fentanyl, oxycodone, DAMGO, DPDPE, U69593, deltorphin II, and nociceptin, were examined herein. These included the substance use disorder (SUD) compounds morphine, fentanyl, and oxycodone. Additionally, the antagonist tool compounds naloxone, NTI, norBNI, and β-FNA were assayed in parallel at the human MOR, KOR, DOR, and NOP opioid receptors. Furthermore, the agonist tool compounds were tested in the same in vivo tail-flick antinociception assays via intrathecal injection for ED50 potencies. These data provide both in vitro comparative pharmacology as a reference for cellular activities and in vivo antinociception profiles for these tool compounds.
期刊介绍:
ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered.
ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition.
Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.