安全且可口服的丝氨酸棕榈酰转移酶抑制剂改善年龄相关性肌肉减少症。

IF 4.9 Q1 CHEMISTRY, MEDICINAL ACS Pharmacology and Translational Science Pub Date : 2024-12-29 eCollection Date: 2025-01-10 DOI:10.1021/acsptsci.4c00587
Johanne Poisson, Ioanna Daskalaki, Vijay Potluri, Jean-David Morel, Sandra Rodriguez-Lopez, Alessia De Masi, Giorgia Benegiamo, Suresh Jain, Tanes Lima, Johan Auwerx
{"title":"安全且可口服的丝氨酸棕榈酰转移酶抑制剂改善年龄相关性肌肉减少症。","authors":"Johanne Poisson, Ioanna Daskalaki, Vijay Potluri, Jean-David Morel, Sandra Rodriguez-Lopez, Alessia De Masi, Giorgia Benegiamo, Suresh Jain, Tanes Lima, Johan Auwerx","doi":"10.1021/acsptsci.4c00587","DOIUrl":null,"url":null,"abstract":"<p><p>The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide <i>de novo</i> synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide <i>de novo</i> synthesis, serine palmitoyltransferase (SPT). In a mouse model of age-related sarcopenia, ALT-007, administered through the diet, effectively restored muscle mass and function compromised by aging. Mechanistic studies revealed that ALT-007 enhances protein homeostasis in <i>Caenorhabditis elegans</i> and mouse models of aging and age-related diseases, such as sarcopenia and inclusion body myositis (IBM); this effect is mediated by a specific reduction in very-long chain 1-deoxy-sphingolipid species, which accumulate in both muscle and brain tissues of aged mice and in muscle cells from IBM patients. These findings unveil a promising therapeutic avenue for developing safe ceramide inhibitors to address age-related neuromuscular diseases.</p>","PeriodicalId":36426,"journal":{"name":"ACS Pharmacology and Translational Science","volume":"8 1","pages":"203-215"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729425/pdf/","citationCount":"0","resultStr":"{\"title\":\"Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.\",\"authors\":\"Johanne Poisson, Ioanna Daskalaki, Vijay Potluri, Jean-David Morel, Sandra Rodriguez-Lopez, Alessia De Masi, Giorgia Benegiamo, Suresh Jain, Tanes Lima, Johan Auwerx\",\"doi\":\"10.1021/acsptsci.4c00587\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide <i>de novo</i> synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide <i>de novo</i> synthesis, serine palmitoyltransferase (SPT). In a mouse model of age-related sarcopenia, ALT-007, administered through the diet, effectively restored muscle mass and function compromised by aging. Mechanistic studies revealed that ALT-007 enhances protein homeostasis in <i>Caenorhabditis elegans</i> and mouse models of aging and age-related diseases, such as sarcopenia and inclusion body myositis (IBM); this effect is mediated by a specific reduction in very-long chain 1-deoxy-sphingolipid species, which accumulate in both muscle and brain tissues of aged mice and in muscle cells from IBM patients. These findings unveil a promising therapeutic avenue for developing safe ceramide inhibitors to address age-related neuromuscular diseases.</p>\",\"PeriodicalId\":36426,\"journal\":{\"name\":\"ACS Pharmacology and Translational Science\",\"volume\":\"8 1\",\"pages\":\"203-215\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729425/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Pharmacology and Translational Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acsptsci.4c00587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/10 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Pharmacology and Translational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acsptsci.4c00587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/10 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

神经酰胺和相关代谢物的积累已成为促进年龄相关疾病发病的关键机制。然而,针对神经酰胺从头合成途径的小分子抑制剂目前尚无法用于临床。我们合成了一种安全的口服生物可利用抑制剂,命名为ALT-007,靶向神经酰胺合成的限速酶,丝氨酸棕榈酰转移酶(SPT)。在年龄相关性肌肉减少症小鼠模型中,通过饮食给予ALT-007,有效地恢复了因衰老而受损的肌肉质量和功能。机制研究表明,ALT-007增强秀丽隐杆线虫和衰老及年龄相关疾病(如肌肉减少症和包体体肌炎)小鼠模型中的蛋白质稳态;这种效应是由超长链1-脱氧鞘脂类的特异性减少介导的,超长链1-脱氧鞘脂类积聚在老年小鼠的肌肉和脑组织以及IBM患者的肌肉细胞中。这些发现为开发安全的神经酰胺抑制剂来治疗与年龄相关的神经肌肉疾病开辟了一条有希望的治疗途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.

The accumulation of ceramides and related metabolites has emerged as a pivotal mechanism contributing to the onset of age-related diseases. However, small molecule inhibitors targeting the ceramide de novo synthesis pathway for clinical use are currently unavailable. We synthesized a safe and orally bioavailable inhibitor, termed ALT-007, targeting the rate-limiting enzyme of ceramide de novo synthesis, serine palmitoyltransferase (SPT). In a mouse model of age-related sarcopenia, ALT-007, administered through the diet, effectively restored muscle mass and function compromised by aging. Mechanistic studies revealed that ALT-007 enhances protein homeostasis in Caenorhabditis elegans and mouse models of aging and age-related diseases, such as sarcopenia and inclusion body myositis (IBM); this effect is mediated by a specific reduction in very-long chain 1-deoxy-sphingolipid species, which accumulate in both muscle and brain tissues of aged mice and in muscle cells from IBM patients. These findings unveil a promising therapeutic avenue for developing safe ceramide inhibitors to address age-related neuromuscular diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Pharmacology and Translational Science
ACS Pharmacology and Translational Science Medicine-Pharmacology (medical)
CiteScore
10.00
自引率
3.30%
发文量
133
期刊介绍: ACS Pharmacology & Translational Science publishes high quality, innovative, and impactful research across the broad spectrum of biological sciences, covering basic and molecular sciences through to translational preclinical studies. Clinical studies that address novel mechanisms of action, and methodological papers that provide innovation, and advance translation, will also be considered. We give priority to studies that fully integrate basic pharmacological and/or biochemical findings into physiological processes that have translational potential in a broad range of biomedical disciplines. Therefore, studies that employ a complementary blend of in vitro and in vivo systems are of particular interest to the journal. Nonetheless, all innovative and impactful research that has an articulated translational relevance will be considered. ACS Pharmacology & Translational Science does not publish research on biological extracts that have unknown concentration or unknown chemical composition. Authors are encouraged to use the pre-submission inquiry mechanism to ensure relevance and appropriateness of research.
期刊最新文献
Molecular and Immunological Properties of a Chimeric Glycosyl Hydrolase 18 Based on Immunoinformatics Approaches: A Design of a New Anti-Leishmania Vaccine. Recommended Opioid Receptor Tool Compounds: Comparative In Vitro for Receptor Selectivity Profiles and In Vivo for Pharmacological Antinociceptive Profiles. Sigma 1 Receptor and Its Pivotal Role in Neurological Disorders. A 3D Model of the Human Lung Airway for Evaluating Permeability of Inhaled Drugs. Safe and Orally Bioavailable Inhibitor of Serine Palmitoyltransferase Improves Age-Related Sarcopenia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1