{"title":"建立可靠的欧西塔尼亚野生蜜蜂16S迷你条码库。","authors":"Anaïs Marquisseau, Kamila Canale-Tabet, Emmanuelle Labarthe, Géraldine Pascal, Christophe Klopp, André Pornon, Nathalie Escaravage, Rémi Rudelle, Alain Vignal, Annie Ouin, Mélodie Ollivier, Magalie Pichon","doi":"10.3897/BDJ.12.e137540","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for. The COI (Cytochrome Oxydase subunit 1) gene, the most used in barcoding/metabarcoding of arthropods, suffers from primer bias and difficulties for covering all wild bee species using the classical Folmer primers.</p><p><strong>New information: </strong>We present here a curated database for a 250 bp mini-barcode region of the 16S rRNA gene, suitable for low-cost metabarcoding wild bees in applications, such as eDNA analysis or for sequencing ancient or degraded DNA. Sequenced specimens were captured in Occitania (south-west of France) and morphologically identified by entomologists, with a total of 530 individuals belonging to 171 species and 19 genera. A customised workflow including distance-tree inferences and a second round of entomologist observations, when necessary, was used for the validation of 348 mini-barcodes covering 148 species. Amongst them, 93 species did not have any 16S reference barcode available before our contribution. This high-quality reference library data are freely available to the scientific community, with the aim of facilitating future large-scale characterisation of wild bee communities in a context of pollinators' decline.</p>","PeriodicalId":55994,"journal":{"name":"Biodiversity Data Journal","volume":"13 ","pages":"e137540"},"PeriodicalIF":1.0000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733625/pdf/","citationCount":"0","resultStr":"{\"title\":\"Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.\",\"authors\":\"Anaïs Marquisseau, Kamila Canale-Tabet, Emmanuelle Labarthe, Géraldine Pascal, Christophe Klopp, André Pornon, Nathalie Escaravage, Rémi Rudelle, Alain Vignal, Annie Ouin, Mélodie Ollivier, Magalie Pichon\",\"doi\":\"10.3897/BDJ.12.e137540\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for. The COI (Cytochrome Oxydase subunit 1) gene, the most used in barcoding/metabarcoding of arthropods, suffers from primer bias and difficulties for covering all wild bee species using the classical Folmer primers.</p><p><strong>New information: </strong>We present here a curated database for a 250 bp mini-barcode region of the 16S rRNA gene, suitable for low-cost metabarcoding wild bees in applications, such as eDNA analysis or for sequencing ancient or degraded DNA. Sequenced specimens were captured in Occitania (south-west of France) and morphologically identified by entomologists, with a total of 530 individuals belonging to 171 species and 19 genera. A customised workflow including distance-tree inferences and a second round of entomologist observations, when necessary, was used for the validation of 348 mini-barcodes covering 148 species. Amongst them, 93 species did not have any 16S reference barcode available before our contribution. This high-quality reference library data are freely available to the scientific community, with the aim of facilitating future large-scale characterisation of wild bee communities in a context of pollinators' decline.</p>\",\"PeriodicalId\":55994,\"journal\":{\"name\":\"Biodiversity Data Journal\",\"volume\":\"13 \",\"pages\":\"e137540\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-01-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11733625/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biodiversity Data Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.3897/BDJ.12.e137540\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIODIVERSITY CONSERVATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodiversity Data Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.3897/BDJ.12.e137540","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
Building a reliable 16S mini-barcode library of wild bees from Occitania, south-west of France.
Background: DNA barcoding and metabarcoding are now powerful tools for studying biodiversity and especially the accurate identification of large sample collections belonging to diverse taxonomic groups. Their success depends largely on the taxonomic resolution of the DNA sequences used as barcodes and on the reliability of the reference databases. For wild bees, the barcode sequences coverage is consistently growing in volume, but some incorrect species annotations need to be cared for. The COI (Cytochrome Oxydase subunit 1) gene, the most used in barcoding/metabarcoding of arthropods, suffers from primer bias and difficulties for covering all wild bee species using the classical Folmer primers.
New information: We present here a curated database for a 250 bp mini-barcode region of the 16S rRNA gene, suitable for low-cost metabarcoding wild bees in applications, such as eDNA analysis or for sequencing ancient or degraded DNA. Sequenced specimens were captured in Occitania (south-west of France) and morphologically identified by entomologists, with a total of 530 individuals belonging to 171 species and 19 genera. A customised workflow including distance-tree inferences and a second round of entomologist observations, when necessary, was used for the validation of 348 mini-barcodes covering 148 species. Amongst them, 93 species did not have any 16S reference barcode available before our contribution. This high-quality reference library data are freely available to the scientific community, with the aim of facilitating future large-scale characterisation of wild bee communities in a context of pollinators' decline.
Biodiversity Data JournalAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
2.20
自引率
7.70%
发文量
283
审稿时长
6 weeks
期刊介绍:
Biodiversity Data Journal (BDJ) is a community peer-reviewed, open-access, comprehensive online platform, designed to accelerate publishing, dissemination and sharing of biodiversity-related data of any kind. All structural elements of the articles – text, morphological descriptions, occurrences, data tables, etc. – will be treated and stored as DATA, in accordance with the Data Publishing Policies and Guidelines of Pensoft Publishers.
The journal will publish papers in biodiversity science containing taxonomic, floristic/faunistic, morphological, genomic, phylogenetic, ecological or environmental data on any taxon of any geological age from any part of the world with no lower or upper limit to manuscript size.