{"title":"在边缘启用概率AI的忆阻器。","authors":"Damien Querlioz","doi":"10.1038/s43588-024-00761-x","DOIUrl":null,"url":null,"abstract":"By combining several probabilistic AI algorithms, a recent study demonstrates experimentally that the inherent noise and variation in memristor nanodevices can be exploited as features for energy-efficient on-chip learning.","PeriodicalId":74246,"journal":{"name":"Nature computational science","volume":"5 1","pages":"7-8"},"PeriodicalIF":12.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Memristors enabling probabilistic AI at the edge\",\"authors\":\"Damien Querlioz\",\"doi\":\"10.1038/s43588-024-00761-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By combining several probabilistic AI algorithms, a recent study demonstrates experimentally that the inherent noise and variation in memristor nanodevices can be exploited as features for energy-efficient on-chip learning.\",\"PeriodicalId\":74246,\"journal\":{\"name\":\"Nature computational science\",\"volume\":\"5 1\",\"pages\":\"7-8\"},\"PeriodicalIF\":12.0000,\"publicationDate\":\"2025-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature computational science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43588-024-00761-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature computational science","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43588-024-00761-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
By combining several probabilistic AI algorithms, a recent study demonstrates experimentally that the inherent noise and variation in memristor nanodevices can be exploited as features for energy-efficient on-chip learning.