超临界CO2处理对小梁骨力学性能和微结构的影响,采用压缩测试和微计算机断层扫描。

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2025-01-16 DOI:10.1016/j.jmbbm.2025.106893
Théo Krieger , Virginie Taillebot , Aurélien Maurel-Pantel , Marylène Lallemand , Grégoire Edorh , Matthieu Ollivier , Martine Pithioux
{"title":"超临界CO2处理对小梁骨力学性能和微结构的影响,采用压缩测试和微计算机断层扫描。","authors":"Théo Krieger ,&nbsp;Virginie Taillebot ,&nbsp;Aurélien Maurel-Pantel ,&nbsp;Marylène Lallemand ,&nbsp;Grégoire Edorh ,&nbsp;Matthieu Ollivier ,&nbsp;Martine Pithioux","doi":"10.1016/j.jmbbm.2025.106893","DOIUrl":null,"url":null,"abstract":"<div><div>Surgeons frequently use allograft bone due to its osteoconductive, osteoinductive, and osteogenic properties. Preservation processes are employed to clean the allograft, improve its conservation, and ensure its sterilization. Many current processes use the properties of supercritical CO<sub>2</sub> to remove bone marrow.</div><div>This study aims to measure the effect of a supercritical CO<sub>2</sub> process on the microarchitecture and the mechanical properties of trabecular bone. Eleven femoral heads were harvested from patients undergoing total hip arthroplasty. Sixty-seven cubic samples with 10 mm sides from these femoral heads were distributed in 3 groups: frozen at −20 °C, gamma irradiated and frozen at −20 °C, and treated with a supercritical CO<sub>2</sub> process including gamma irradiation. All the samples were tested with a microcomputer tomography scanner and a compression testing machine.</div><div>The supercritical CO<sub>2</sub> process has no significant effect on the microarchitectural parameters (BV/TV, Tb.th, Tb.sp, Tb.N, DA, and Conn.D). It has also no significant effect on the elastic modulus, yield stress, and ultimate stress. However, it has a significant effect on the densification stress.</div><div>An advanced study on the correlation between the microarchitecture and the mechanical properties shows that for a given volume fraction of 0.26 (the mean value for our study), the elastic modulus and ultimate stress of the bone treated with supercritical CO<sub>2</sub> were lower than those from the frozen group by 19% and 24% respectively.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106893"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of a supercritical CO2 process on the mechanical properties and microarchitecture of trabecular bone using compression testing and microcomputed tomography\",\"authors\":\"Théo Krieger ,&nbsp;Virginie Taillebot ,&nbsp;Aurélien Maurel-Pantel ,&nbsp;Marylène Lallemand ,&nbsp;Grégoire Edorh ,&nbsp;Matthieu Ollivier ,&nbsp;Martine Pithioux\",\"doi\":\"10.1016/j.jmbbm.2025.106893\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Surgeons frequently use allograft bone due to its osteoconductive, osteoinductive, and osteogenic properties. Preservation processes are employed to clean the allograft, improve its conservation, and ensure its sterilization. Many current processes use the properties of supercritical CO<sub>2</sub> to remove bone marrow.</div><div>This study aims to measure the effect of a supercritical CO<sub>2</sub> process on the microarchitecture and the mechanical properties of trabecular bone. Eleven femoral heads were harvested from patients undergoing total hip arthroplasty. Sixty-seven cubic samples with 10 mm sides from these femoral heads were distributed in 3 groups: frozen at −20 °C, gamma irradiated and frozen at −20 °C, and treated with a supercritical CO<sub>2</sub> process including gamma irradiation. All the samples were tested with a microcomputer tomography scanner and a compression testing machine.</div><div>The supercritical CO<sub>2</sub> process has no significant effect on the microarchitectural parameters (BV/TV, Tb.th, Tb.sp, Tb.N, DA, and Conn.D). It has also no significant effect on the elastic modulus, yield stress, and ultimate stress. However, it has a significant effect on the densification stress.</div><div>An advanced study on the correlation between the microarchitecture and the mechanical properties shows that for a given volume fraction of 0.26 (the mean value for our study), the elastic modulus and ultimate stress of the bone treated with supercritical CO<sub>2</sub> were lower than those from the frozen group by 19% and 24% respectively.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106893\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125000098\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000098","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

外科医生经常使用同种异体骨,因为它具有骨导电性、骨诱导性和成骨性。保存过程用于清洁同种异体移植物,改善其保存,并确保其灭菌。目前许多方法利用超临界二氧化碳的特性来去除骨髓。本研究旨在测量超临界CO2处理对骨小梁微结构和力学性能的影响。从接受全髋关节置换术的患者中取出11个股骨头。67个侧面为10 mm的立方样品分为3组:-20°C冷冻,γ辐照和-20°C冷冻,并进行包括γ辐照在内的超临界CO2处理。所有样品都用微机断层扫描仪和压缩试验机进行了测试。超临界CO2过程对微结构参数(BV/TV, Tb)无显著影响。th,结核病。sp,结核病。N, DA和Conn.D)。对弹性模量、屈服应力和极限应力也无显著影响。然而,它对致密化应力有显著的影响。一项关于微结构与力学性能之间相关性的深入研究表明,在给定体积分数为0.26(我们研究的平均值)的情况下,超临界CO2处理的骨的弹性模量和极限应力分别比冷冻组低19%和24%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of a supercritical CO2 process on the mechanical properties and microarchitecture of trabecular bone using compression testing and microcomputed tomography
Surgeons frequently use allograft bone due to its osteoconductive, osteoinductive, and osteogenic properties. Preservation processes are employed to clean the allograft, improve its conservation, and ensure its sterilization. Many current processes use the properties of supercritical CO2 to remove bone marrow.
This study aims to measure the effect of a supercritical CO2 process on the microarchitecture and the mechanical properties of trabecular bone. Eleven femoral heads were harvested from patients undergoing total hip arthroplasty. Sixty-seven cubic samples with 10 mm sides from these femoral heads were distributed in 3 groups: frozen at −20 °C, gamma irradiated and frozen at −20 °C, and treated with a supercritical CO2 process including gamma irradiation. All the samples were tested with a microcomputer tomography scanner and a compression testing machine.
The supercritical CO2 process has no significant effect on the microarchitectural parameters (BV/TV, Tb.th, Tb.sp, Tb.N, DA, and Conn.D). It has also no significant effect on the elastic modulus, yield stress, and ultimate stress. However, it has a significant effect on the densification stress.
An advanced study on the correlation between the microarchitecture and the mechanical properties shows that for a given volume fraction of 0.26 (the mean value for our study), the elastic modulus and ultimate stress of the bone treated with supercritical CO2 were lower than those from the frozen group by 19% and 24% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Editorial Board Mechanical modulation of docetaxel-treated bladder cancer cells by various changes in cytoskeletal structures Evaluation of wear, corrosion, and biocompatibility of a novel biomedical TiZr-based medium entropy alloy On the repeatability of wrinkling topography patterns in the fingers of water immersed human skin Skeletal impacts of dual in vivo compressive axial tibial and ulnar loading in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1