{"title":"横切面脊髓灰质和白质的局部力学特性。","authors":"Nicolas Bailly , Eric Wagnac , Yvan Petit","doi":"10.1016/j.jmbbm.2025.106898","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.5 mm diameter flat punch. No significant difference in average longitudinal elastic modulus was found between white matter (n = 183, E = 0.51 ± 0.21 kPa) and gray matter (n = 51, E = 0.53 ± 0.25 kPa). In the gray matter, the elastic modulus in the dorsal horn (0.48 ± 0.18 kPa) was significantly smaller than in the ventral horn (0.57 ± 0.24 kPa) (GLMM, p < 0.05). The elastic modulus in the dorsal horn was also significantly smaller than in the lateral (0.52 ± 0.22 kPa) and ventral funiculi (0.53 ± 0.18 kPa) of the white matter (GLMM, p < 0.05). However, there was no significant difference in the elastic modulus among the ventral, lateral and dorsal funiculi of the white matter (GLMM, p > 0.05). The average elastic modulus strongly varies between samples, ranging from 0.23 (±0.06) kPa to 0.79 (±0.18) kPa and the testing time postmortem was significantly associated with a decrease in elastic modulus (t = −5.2, p < 0.001). The spinal cord's white matter demonstrated significantly lower elastic modulus compared to published data on brain tissue tested under similar conditions. These findings enhance our comprehension of the mechanical properties of spinal cord white and gray matter, challenging the homogeneity assumption of current models.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"163 ","pages":"Article 106898"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regional mechanical properties of spinal cord gray and white matter in transverse section\",\"authors\":\"Nicolas Bailly , Eric Wagnac , Yvan Petit\",\"doi\":\"10.1016/j.jmbbm.2025.106898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.5 mm diameter flat punch. No significant difference in average longitudinal elastic modulus was found between white matter (n = 183, E = 0.51 ± 0.21 kPa) and gray matter (n = 51, E = 0.53 ± 0.25 kPa). In the gray matter, the elastic modulus in the dorsal horn (0.48 ± 0.18 kPa) was significantly smaller than in the ventral horn (0.57 ± 0.24 kPa) (GLMM, p < 0.05). The elastic modulus in the dorsal horn was also significantly smaller than in the lateral (0.52 ± 0.22 kPa) and ventral funiculi (0.53 ± 0.18 kPa) of the white matter (GLMM, p < 0.05). However, there was no significant difference in the elastic modulus among the ventral, lateral and dorsal funiculi of the white matter (GLMM, p > 0.05). The average elastic modulus strongly varies between samples, ranging from 0.23 (±0.06) kPa to 0.79 (±0.18) kPa and the testing time postmortem was significantly associated with a decrease in elastic modulus (t = −5.2, p < 0.001). The spinal cord's white matter demonstrated significantly lower elastic modulus compared to published data on brain tissue tested under similar conditions. These findings enhance our comprehension of the mechanical properties of spinal cord white and gray matter, challenging the homogeneity assumption of current models.</div></div>\",\"PeriodicalId\":380,\"journal\":{\"name\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"volume\":\"163 \",\"pages\":\"Article 106898\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Mechanical Behavior of Biomedical Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1751616125000141\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000141","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
摘要
了解脊髓损伤需要对其力学特性有全面的了解,由于报道的可变性,这一点仍然存在争议。本研究旨在利用微压痕表征脊髓横切面的区域力学特性。采用直径0.5 mm的平冲床对10条新鲜收获的猪胸脊髓横切面进行准静态压痕。白质(n = 183, E = 0.51±0.21 kPa)与灰质(n = 51, E = 0.53±0.25 kPa)的平均纵向弹性模量差异无统计学意义。在灰质中,背角的弹性模量(0.48±0.18 kPa)明显小于腹角的弹性模量(0.57±0.24 kPa) (GLMM, p 0.05)。样品间的平均弹性模量差异很大,范围为0.23(±0.06)kPa至0.79(±0.18)kPa,并且死后测试时间与弹性模量的降低显著相关(t = -5.2, p
Regional mechanical properties of spinal cord gray and white matter in transverse section
Understanding spinal cord injury requires a comprehensive knowledge of its mechanical properties, which remains debated due to the variability reported. This study aims to characterize the regional mechanical properties of the spinal cord in transverse sections using micro-indentation. Quasi-static indentations were performed on the entire surface of transverse slices obtained from 10 freshly harvested porcine thoracic spinal cords using a 0.5 mm diameter flat punch. No significant difference in average longitudinal elastic modulus was found between white matter (n = 183, E = 0.51 ± 0.21 kPa) and gray matter (n = 51, E = 0.53 ± 0.25 kPa). In the gray matter, the elastic modulus in the dorsal horn (0.48 ± 0.18 kPa) was significantly smaller than in the ventral horn (0.57 ± 0.24 kPa) (GLMM, p < 0.05). The elastic modulus in the dorsal horn was also significantly smaller than in the lateral (0.52 ± 0.22 kPa) and ventral funiculi (0.53 ± 0.18 kPa) of the white matter (GLMM, p < 0.05). However, there was no significant difference in the elastic modulus among the ventral, lateral and dorsal funiculi of the white matter (GLMM, p > 0.05). The average elastic modulus strongly varies between samples, ranging from 0.23 (±0.06) kPa to 0.79 (±0.18) kPa and the testing time postmortem was significantly associated with a decrease in elastic modulus (t = −5.2, p < 0.001). The spinal cord's white matter demonstrated significantly lower elastic modulus compared to published data on brain tissue tested under similar conditions. These findings enhance our comprehension of the mechanical properties of spinal cord white and gray matter, challenging the homogeneity assumption of current models.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.