新型绿色荧光蛋白发色团类似物的超分子组装及其在荧光防伪中的应用。

Yifei Ren, Chusen Huang
{"title":"新型绿色荧光蛋白发色团类似物的超分子组装及其在荧光防伪中的应用。","authors":"Yifei Ren, Chusen Huang","doi":"10.1039/d4tb02112f","DOIUrl":null,"url":null,"abstract":"<p><p>Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]). CA molecules are encapsulated by CB[7] to form a 1 : 2 host-guest assembly, thereby the fluorescence brightness of CA can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly-disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The CA-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.\",\"authors\":\"Yifei Ren, Chusen Huang\",\"doi\":\"10.1039/d4tb02112f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]). CA molecules are encapsulated by CB[7] to form a 1 : 2 host-guest assembly, thereby the fluorescence brightness of CA can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly-disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The CA-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d4tb02112f\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02112f","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

具有可切换行为和诱导发光增强功能的超分子荧光材料是一类新型荧光防伪材料。由于这些材料是通过非共价键的超分子主客体相互作用通过自组装构建的,因此这些荧光材料可以通过可逆的组装-拆卸过程来调节其光学性质。受β-桶状支架在激活绿色荧光蛋白(GFP)发色团中的强荧光作用的启发,我们设计了一个基于新型GFP类似物(CA)和葫芦b[7] (CB[7])的超分子系统。CA分子被CB[7]包封形成1:2的主-客组装体,从而可以调节CA的荧光亮度。荧光强度的可逆调节还通过控制在高结合竞争对手盐酸金刚烷胺存在下的动态组装-拆卸过程来实现。CA-CB[7]系统通过在A4纸上的可逆荧光读出成功用于信息防伪,使GFP发色基团模拟物和瓜脲类体系成为构建智能信息加密和防伪材料的潜在候选材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A supramolecular assembly of a novel green fluorescent protein chromophore-based analogue and its application in fluorescence anti-counterfeiting.

Supramolecular fluorescent materials with switchable behavior and induced luminescence enhancement are a new class of special materials for constructing fluorescence anti-counterfeiting materials. Since these materials are constructed by self-assembly through supramolecular host-guest interactions of non-covalent bonds, such fluorescent materials can regulate their optical properties through a reversible assembly-disassembly process. Inspired by the role of the β-barrel scaffold in activating strong fluorescence of a green fluorescent protein (GFP) chromophore, we designed a supramolecular system based on a novel GFP analogue (CA) and cucurbit[7]uril (CB[7]). CA molecules are encapsulated by CB[7] to form a 1 : 2 host-guest assembly, thereby the fluorescence brightness of CA can be tuned. The reversible regulation of fluorescence intensity was additionally realized by controlling the dynamic assembly-disassembly process in the presence of a higher binding competitor, amantadine hydrochloride. The CA-CB[7] system was successfully used for information anti-counterfeiting through the reversible fluorescence readout on A4 paper, which enables the GFP chromophore analogue and cucurbituril system to become a potential candidate for constructing intelligent information encryption and anti-counterfeiting materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Luminescent bio-sensors via co-assembly of hen egg white lysozyme with Eu3+/Tb3+-complexes. Citrus pectin-coated inhalable PLGA nanoparticles for treatment of pulmonary fibrosis. Correction: Core-shell structured microneedles with programmed drug release functions for prolonged hyperuricemia management. Correction: Development of a tannic acid- and silicate ion-functionalized PVA-starch composite hydrogel for in situ skeletal muscle repairing. Mixed-valence vanadium-doped mesoporous bioactive glass for treatment of tumor-associated bone defects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1