自驱动自催化三足DNA纳米机用于快速灵敏检测结直肠癌中miR-21 in。

Qin Ma, Yilong Tu, Wen Yun, Mingming Zhang
{"title":"自驱动自催化三足DNA纳米机用于快速灵敏检测结直肠癌中miR-21 in。","authors":"Qin Ma, Yilong Tu, Wen Yun, Mingming Zhang","doi":"10.1016/j.saa.2025.125757","DOIUrl":null,"url":null,"abstract":"<p><p>A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q). The released sequence Q initiated the next SDSC cycle of tripedal DNA nanomachine. In the special DNA nanomachines design, the components with close spatial localization were constructed on a single nanostructure, which significantly increased local reactant concentrations and reaction rates. A dynamic correlation was obtained from 10 pM to 50 nM between fluorescence signal and miR-21 concentration. The effective concentration of reactant greatly increased, compared with the free diffusible reactants. Consequently, the incubation time was significantly shorted to 35 min. This strategy showed a promising potential in miRNA detection and disease diagnosis.</p>","PeriodicalId":94213,"journal":{"name":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","volume":"330 ","pages":"125757"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-driven and self-catalytic tripedal DNA nanomachine for rapid and sensitive detection of miR-21 in in colorectal cancer.\",\"authors\":\"Qin Ma, Yilong Tu, Wen Yun, Mingming Zhang\",\"doi\":\"10.1016/j.saa.2025.125757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q). The released sequence Q initiated the next SDSC cycle of tripedal DNA nanomachine. In the special DNA nanomachines design, the components with close spatial localization were constructed on a single nanostructure, which significantly increased local reactant concentrations and reaction rates. A dynamic correlation was obtained from 10 pM to 50 nM between fluorescence signal and miR-21 concentration. The effective concentration of reactant greatly increased, compared with the free diffusible reactants. Consequently, the incubation time was significantly shorted to 35 min. This strategy showed a promising potential in miRNA detection and disease diagnosis.</p>\",\"PeriodicalId\":94213,\"journal\":{\"name\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"volume\":\"330 \",\"pages\":\"125757\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.saa.2025.125757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.saa.2025.125757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/15 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

开发了一种自驱动自催化(SDSC)三足DNA纳米机,用于检测microRNA-21 (miR-21)。通过接近效应,microRNA可以打开三足DNA纳米机器的一只手臂,与另一只手臂形成DNAzyme。DNAzyme切割后,暴露的DNA臂区与第三臂区竞争,产生一个DNA片段(序列Q)。释放的序列Q启动了下一个三足DNA纳米机器的SDSC循环。在特殊的DNA纳米机器设计中,将空间定位紧密的组分构建在单个纳米结构上,显著提高了局部反应物浓度和反应速率。从10 pM到50 nM荧光信号与miR-21浓度呈动态相关。与自由扩散反应物相比,反应物的有效浓度大大提高。因此,孵育时间显著缩短至35分钟。该策略在miRNA检测和疾病诊断方面显示出良好的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-driven and self-catalytic tripedal DNA nanomachine for rapid and sensitive detection of miR-21 in in colorectal cancer.

A self-driven and self-catalytic (SDSC) tripedal DNA nanomachine was developed for microRNA-21 (miR-21) detection. The microRNA could open one arm of tripedal DNA nanomachine to form DNAzyme with a nearby arm through the proximity effect. After DNAzyme's cleavage, the exposed DNA arm region competed with the third arm and produced a DNA segment (sequence Q). The released sequence Q initiated the next SDSC cycle of tripedal DNA nanomachine. In the special DNA nanomachines design, the components with close spatial localization were constructed on a single nanostructure, which significantly increased local reactant concentrations and reaction rates. A dynamic correlation was obtained from 10 pM to 50 nM between fluorescence signal and miR-21 concentration. The effective concentration of reactant greatly increased, compared with the free diffusible reactants. Consequently, the incubation time was significantly shorted to 35 min. This strategy showed a promising potential in miRNA detection and disease diagnosis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The impact of halogen substitution quantities on the fluorescence intensity ratio of lanthanide Schiff base complexes. Dual-mode luminescence and colorimetric sensing for Al3+ and Fe2+/Fe3+ ions in water using a zinc coordination polymer. A mitochondrion-targeted poly(N-isopropylacrylamide-coacrylic acid) nanohydrogel with a fluorescent bioprobe for ferrous ion imaging in vitro and in vivo. A paper-based SERS/colorimetry substrate for reliable detection. A portable paper-based surface enhanced Raman scattering platform for Al3+ sensing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1